STCF Track Fitting

Zhenna Lu, Hang Zhou, Jin Zhang

On behalf of the STCF tracking group

School of Science, Shenzhen campus of Sun Yat-sen University

July 3, 2025

2025超级陶粲装置研讨会, 湘潭

luzhn@mail2.sysu.edu.cn

Outline

- **1. Tracking at STCF**
- **2. Track Fitting with GenFit**
 - 1 Extrapolate method
 - \bigcirc Fitting algorithm
- 3. Performance
- 4. Ongoing study

STCF Tracking System

- The STCF tracking system is composed of two parts, the inner tracker(ITK) and the main drift chamber(MDC).
 - ITK is the innermost part surrounding the interaction point
 - 3 layers
 - two options : μRWELL-based ITK / MAPS-based ITK
 - MDC is the main part of the tracking system
 - consists of eight super-layers, 4 stereo super-layers, 4 axial super-layers, and each super-layer contains six layers of cells
 - radii ranging from 200 mm to 840mm

Tracking at STCF

- **Tracking task**: reconstruct charged particles with high efficiency and good resolution (from 50 MeV to 3.5 GeV)
- **STCF tracking baseline**: Hough finder + GenFit2
 - Input: detectors hits from ITK and MDC
 - Firstly, graph neural network (GNN) is employed to effectively filter out noise hit.
 - Then the surviving hits are used for a global track finding based on the Hough transform.
 - At last, Track fitting takes track candidates as input, to obtain more precise parameters.

Introduction to GENFIT

- GENFIT2 A Generic Track Reconstruction toolkit
 - Experiment-independent, modular track-fitting framework
 - Open source C++ code
 - Larger user community(e.g., Bellell, PANDA, SHiP, AFIS ...)
 - Providing some typical track fitting tools, e.g., Kalman Filter, Deterministic Annealing Filter
- In GENFIT2, track fitting is based on the following three components:

Measurements

- All detector measurements are defined in detector planes.
 - Planar detector: Use their physical detector plane
 - Non-planar detectors: Construct virtual detector plane
 - wire-based drift detector
 - Plane contains the point of closest approach of the track to the wire and passes through the entire wire
 - \vec{v} along the wire; \vec{u} perpendicular to the wire
 - space-point detector
 - Plane contains the hit position and the point of closest approach of the track to the hit point
 - \vec{v} and \vec{u} is chosen arbitrarily in the plane

track representations

• GENFIT2 can actually use 3 different coordinate systems:

The variables below are defined as the space coordinates $\vec{x}(x, y, z)$; the momentum $\vec{p}(p_x, p_y, p_z)$; the charge q; the absolute

value of the momentum p; the momentum direction unit vector \vec{a} .

- 6D-coordinates (x, y, z, p_x, p_y, p_z)
- global coordinates $(x, y, z, \vec{a}, \frac{q}{p})$
- local coordinates $(\frac{q}{p}, u', v', u, v)$

The plane has an origin \vec{o} , and is spanned by two orthogounit vectors \vec{u} and \vec{v} . The normal vector \vec{n} is then equal to $\vec{u} \times \vec{v}$. And u', v' are the direction cosines.

Extrapolate method

• GENFIT2 tool implements a Runge-Kutta extrapolator to propagate the parameters.

- taking into account field inhomogeneities
 - adjust the step size dynamically
- Consider material effects
 - the mean energy loss and its straggling for charged
 - the multiple scattering

Fitting algorithm

• Kalman Filter

- Iterates in 3 steps: prediction, filter, and smoothing
- The iterative bi-directional Kalman filter is applied in GENFIT
 - Forward fitting: from inner detection module to the outer
 - Backward fitting: fit in the backwards direction
 - Smoothing in GENFIT:
 - averaging the forward and backward fit
- Deterministic Annealing Filter
 - Iterative Kalman filter with weighting and annealing process
 - assignment probabilities for each measurement
 - Can be used to reject outliers or to resolve left/right ambiguities

- a) At first, all measurements get similar weights, and all will be considered.
- b) After update, measurement with large errors are assigned smaller weight.
- c) As the temperature decreases, measurements with large errors are given even less weight.
 - the weight drops below the threshold, reject

Fitting algorithm

Deterministic Annealing Filter

- when using the DAF algorithm, the weights of measurements need to be initialized.
- **Basic solution**: to assign both left and right measurements a weight = 0.5
 - Wire positions are taken as measurements in the first iteration, covariance is twice the mean of the individual covariances
 - all wire positions have same covariance
 - systematic false estimate of the covariance biases the fit
- Genfit2 implements a technique to initialize the weights:
 - measurements with larger drift radii are assigned smaller weights, since the wire position is expected to be farther away from the trajectory.
 - In contrast, measurements with smaller drift radii, which are closer to the trajectory, get larger weights.

$$w = \frac{1}{2} \left(1 - \frac{r_{drift}}{r_{drift,max}}\right)^2$$

w is the given weight, and r_{drift} is the distance of the measurement from trajectory

Performance: pull distributions at the point of closest approach(POCA)

• Pull distribution

simulated IGeV muons at θ =20° ~ 160° (ITKW+MDC)

Performance: pull distributions at the 1st measurement

• Pull distribution

 $Pull = \frac{v_{fit} - v_{truth}}{\sigma_n}$

simulated IGeV muons at θ =20° ~ 160° (ITKW+MDC)

the pull distributions are approximately consistent with standard normal distributions, demonstrating that the track parameters and their uncertainties are estimated correctly.

2025超级陶粲装置研讨会, 湘潭

Performance

²⁰²⁵超级陶粲装置研讨会, 湘潭

Performance: Vertex and momentum resolution form $\psi(3686) - \pi^+\pi^- J/\psi$, $J/\psi - \mu^+\mu^-$,

(ITKW+MDC)

shows stable performance w and w/o noise

中山大學

SUN YAT-SEN UNIVERSITY

Performance: Vertex and momentum resolution form $\psi(3686) - \pi^+ \pi^- J/\psi$, $J/\psi - \mu^+ \mu^-$

(ITKM+MDC)

shows stable performance w and w/o noise

中山大

SUN YAT-SEN UNIVERSITY

學

Ongoing study: multi hypotheses

- The different particle hypotheses mainly differ in their masses, which translates to different energy loss assumptions.
- Using all five hypotheses increases computational cost.
- Thus, their impact was studied to determine if one of the particle hypotheses can be omitted.
- the correct hypothesis provides the best estimation for the particle
- The lower the particle momentum, • the greater the difference between particle hypotheses with significantly different masses.

Ongoing study: Fitting Performance w/ w/o brem in simulation

	- ψ/L	→ μ⁺ μ⁻	$J/\psi \rightarrow e^+ e^-$		
Cut Flow	Eff	Rel.Eff	Eff	Rel.Eff	
$N_{good-charged}=4$	66.07%	66.07%	63.99%	63.99%	
$\pi^+\pi^-$ l+l- assignment	66.03%	99.93%	63.95%	99.93%	
EMC PID	64.22%	97.25%	55.53%	86.83%	
<u>chi_{4c}² < 60</u>	59.75%	93.04%	42.05%	75.73%	
Mass Window	59.65%	99.83%	41.98%	99.84%	

Ongoing study: retrieve ITK hits

- Low-momentum particles suffer from significant material effects
 - In some cases, only tracks in MDC are found; ITK hits are lost
- A retrieve ITK hits algorithm is under development to reconstruct

complete tracks to improve the accuracy of track parameters. extrapolate

parameters residual distribution after/before ITK recovery

2025超级陶粲装置研讨会, 湘潭

Ongoing study: retrieve ITK hits

- I. extrapolate to the MDC inner wall firstly
- 2. extrapolate backward layer by layer
- 3. decide whether to retrieve the ITK hits (according to the distance between extrapolated and measured hit position)
- Ongoing task: find the suitable cut to decide whether to retrieve ITK hits

Ongoing study: DAF noise rejection

• The noise rejection capability is studied with IGeV muon, with IX background

- The ambiguity of hits is not initialized before fitting, it is managed in DAF
- The fitter generally converges after 5 iterations

the weight of signal hits converges to 1

- The weight of noise hits with large residual converges to 0
- the remaining noise hits are very close to real tracks(residual<0.05cm)

2025超级陶粲装置研讨会, 湘潭

Summary

- DAF is adopted as the default track fitting algorithm in STCF offline software framework, providing good momentum resolution for both High/Low momentum
- Ongoing study
 - combine the information from ITK and MDC to improve the reconstruction accuracy in low-momentum cases
 - Optimize the fitting criteria to reject noise and reduce fake and duplicate tracks.
 - determine the proper number of particle hypotheses to balance computing cost and performance
 - correct electron bremsstrahlung energy loss

BACK UP

Extrapolate method

Extrapolate method

Estimate step

- step size is limited by:
 - 1 maximum step setting
 - 2 maximum momentum loss
 - do not maximal exceed relative momentum loss in the material

③ material boundary

- extrapolation stops at material boundaries
- ④ distance to the target plane
- 5 field inhomogeneities
 - local error estimate $\epsilon = y_{n+1} \hat{y}_{n+1}$
 - new step length $h_{n+1} = h_n (\frac{\tau}{|\epsilon|})^{\frac{1}{q+1}}$
 - the step is only accepted if the criteria is fulfilled. (eg. $\frac{h_n}{4} \le h_{n+1} \le 4h_n$ and $|\epsilon| < 4\tau$)

higher (y_{n+1}) and lower (\hat{y}_{n+1}) order solution

user-specified error tolerance $\boldsymbol{\tau}$

lower order q

DAF iteration

1

0.0620372

0.0620372

0.592371

0.592371

0.895077

0.895077

0.999994

0.999994

1

iteration I		old weights	1	1	1	1	
		new weights	0.0805671	0.0466704	7.64619e-20	0.0620372	
iteration 2	tion 2		old weights	0.0805671	0.0466704	7.64619e-20	0.0620372
		new weights	0.594671	0.585524	3.81322e-171	0.585042	
iteration 3		old weights	0.594671	0.585524	3.81322e-171	0.585042	
		new weights	0.896426	0.887211	0	0.884235	
iteration 4	tion 4		old weights	0.896426	0.887211	0	0.884235
		new weights	0.999995	0.999991	0	0.999989	
iteration 5		old weights	0.999995	0.999991	0	0.999989	
		new weights	1	1	0	1	

retrieve ITK hits

retrieve ITK hits

- firstly attempted to use global distance for filter decision
- significant deviations were observed in the z-direction
- switch to a weighted distance

 $\overline{d} = (d_i)^T (V_i)^{-1} d_i$ $V_i = H^T C_i H + V_m$

 d_i : distance vector

extrapolate

I'IDC Inner wall

 C_i : uncertainty of track parameters

 V_i : uncertainty of measurements

- the uncertainty defined on the measurement plane is needed
- switch to local weighted distance
 - 1 search detector plane firstly
 - 2 propagate the extrapolated state to the plane
 - 3 calculate local weighted distance between the projected state and

measurement

2025超级陶粲装置研讨会, 湘潭

search sensor

• real muons were fitted with the muon hypothesis

• real muons were fitted with the pion hypothesis

• real muons were fitted with the kaon hypothesis

• real muons were fitted with the proton hypothesis

• real pions were fitted with the muon hypothesis

• real pions were fitted with the pion hypothesis

34

• real pions were fitted with the kaon hypothesis

• real pions were fitted with the proton hypothesis

• real kaons were fitted with the muon hypothesis

• **real kaons** were fitted with the pion hypothesis

• real kaons were fitted with the kaon hypothesis

• real kaons were fitted with proton hypothesis

• **real protons** were fitted with the muon hypothesis

• **real protons** were fitted with the pion hypothesis

• real protons were fitted with the kaon hypothesis

• **real protons** were fitted with the proton hypothesis

Performance

pipi mumu

- mu
 - background imes 0

Performance

pipi mumu

- mu
 - background \times I

