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BESIII tracking system

# Beijing electron-positron collider (BEPCII)
= Peak luminosity : 1033 cm™%s71
s CMS: 2.0 - 4.95(5.6) GeV, t-charm region
+ Main Drift Chamber (MDC) at BESIII
m 43 sense wire layers
= 5 axial wire super-layers, 6 stereo wire super-layers
a dE /dx resolution : 6%
= Momentum resolution : 0.5%@1GeV/c
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Traditional tracking in drift chamber

MDC hits produced
by charged particles

Track finding

Track fitting

Vertex and physics
object reconstruction

+Build candidate tracks and perform hits assignment
m Global approach : Hough Transform (HOUGH)
m Local approach :
o Template Matching (PAT)
o Track Segment Finding (TSF)
o Combinatorial Kalman Filter (CKF) (not yet used in BESIII)

¢ Estimate the track parameters
m Global fit : Least Square Method, Runge-Kutta Method
m Recursive fit : Kalman filter




Methodology: GNN based tracking pipeline

Track finding Track fitting

Stage 1: EC- GNN Stage 2: DBSCAN+RANSAC
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Two stages have their own hyperparameters, can be trained/optimized separately

Reduce background with Graph neural network
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Graph representation

+ A type of neural network that are specifically designed to operate on
graph-structured data

+Graph elements: nodes, edges &,
9o
eFrom graph to track node \\\ /

m nodes - hits G < (N E . o
m edges > track segments = (N, E) /
¢ The storage structure of graphs

= Adjacency matrix

= Adjacency table v W
= Orthogonal list e

= Adjacency multiple table

= Edge set array c
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Graph Neural Network

+GNN key idea: propagate information across the graph using a set of
learnable functions that operate on node and edge features
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Message-passing
+Graph Neural Network edge classifier
= High classification score
« the edge belongs to a true particle track —  GNN >N

= Low classification score
o it Is a spurious or noise edge



Graph construction

Reduce the number of fake edges during graph construction
Pattern Map based on MC simulation at BESII|
+ Definition of valid neighbors
= Hits on the same layer
» Two adjacent sense wires on the left and right
= Hits on the next layer
» The collection of sense wires that could potentially represent two successive hits on a track

+ Edge assignment based on Pattern Map
= Hit with its neighbors on the same layer and next layer
= Hit with its neighbors' neighbors on one layer apart
= Edge label: two hits of this edge belongs to same track or not.

+ Graph representation
= Node features (raw time, position coordinates r, ¢ of the sense wires),

adjacency matrices, edge labels _
A wire on layerl3 and its

neighbors on layerl4



Graph construction

+ Continuity of track:

m geometric structure of detector, track momentum.

¢ To reduce the size of the graphs, the Pattern Map is further reduced based on a

probability cut (>1%)
+MC sample used to build pattern map

= Two million single tracks produced with BESIII offline software (BOSS)
= 5 types of charged particles (et, u*, n%, K%, p/p)

m0.05 GeV/c<p <3 GeV/c
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GNN edge classifier based on PyTorch

¢|nput network

= Node features embedded in latent space

+Graph model

m Edge network: computes weights for edges using the features of the start and end

nodes

= Node network: computes new node features using the edge weight aggregated

features of the connected nodes and the nodes’ current features

s MLPs
= 8 graph iterations

m Strengthen important connections and weaken useless or spurious ones
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Clustering based on DBSCAN
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¢ Transform to Conformal plane
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= Circle passing the origin

= transform into a straight line
+ Transform to ‘a’ parameter plane

m Hits connected in the X-Y plane in a straight line

= 0 as the angle between the straight line and X axis
= The parameter space as cosa and sina
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+ DBSCAN clustering in ‘a’parameter plane
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» Density-Based Spatial Clustering of Application with

Noise

m Hits in a cluster are considered to be in the same

track




Clustering salvage algorithm RANSAC

Signals selected

+Random sample consensus (RANCAS)

: . by GNN
m Estimate a mathematical model from the data
that contains outliers DIECA
m Its good robustness to noise and outliers . .
. # signals in any
= Model can be specified class > threshold

¢RANCAS is triggered by the events when DBSCAN fails
m Polar coordinate space

RANSAC

= linear model
= Inliers 2> gj[rack , c?utllers - other tracks # signals in any
s Stop condition: outliers < threshold class > threshold
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Track fitting

+ Genfit2
s A Generic Track-Fitting Toolkit

s Experiment-independent framework | |
s PANDA, Belle Il, FOPI and other experiments R -
m Deterministic annealing filter (DAF) to resolving the left-right N
ambiguities of wire measurements

¢ Configuration: Detector geometry and materials; TGeoManager

¢|nput :
m Signal wire position, initial values of position and momentum
= particle hypothesis for e, u, , k, p T~

>
Isochrone

o Fitting procedure:
s Start 1st try: drift distance roughly estimated from TDC. ADC of sense wires

m [teration to update information of drift distance, left-right assignment,
hit position on z direction and entrancing angle in the cell et al.

tarift = tTDC — tEST — tﬂight - twp — Lelec




Performance of filtering noise at BESIII

¢Datase
= Single-particle (e*, u*%, n%, K%, p/p) MC sample
0.2 GeV/ic<p <3.0GeV/c

= Mixed with BESIII random trigger data as background (~45% hlts)

m 1 rain: Validation: Test =4: 1: 1
+Hit selection performance

= The preliminary results show that GNN provides high efficiency and purlty of hlts

selection
Npredicted
. . . . i l
= Hit selection Efficiency : —2—— 98.7%
Nsignal
Np_redicted
= Hit selection Purity : N;,‘fe"d“ilcted 96.5%

all
m Efficiency and purity can be balanced

by adjusting the model parameter
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Preliminary tracking performance at BESIII

¢ Particle reconstructed performance
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Sources of efficiency loss

oEfficiency loss during track finding(clustering):

= multi-circular, decays,

= interaction with detector boundary/material, scattering
= 2D crossing tracks or too close to each other
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Further optimization of track finding

+Since z position of hits is unknown, 2D information has large deviation for stereo

wires

+Break into parts especially for tracks with large polar angle

+Re-combination at super layers level
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Z regression and 3D clustering

Learning curve

+GNN regression for z coordinate prediction L= T vl
= structure similar as edge classification GNN
= Lost function:

20 A

« averaged distance between predicted and real position 3%
¢ Clustering:
= 3D parameter space: sina, cosa, z/r °]
e PredictZ
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Potential of 3D clustering

eParameter space clustering is better than original coordinate space.

¢Potential track finding efficiency can reach 97.5% via 3d parameter space
clustering

+Good event definition: #hits per track is between 5 and 50, might get rid of circular and
large angle scattering

Predz Truthz Truth XYZ Truth Truth

wire XY wire XY good event parameter pa;;;nceeter

good event  good event space Seed i
Efficiency (%) 97.3 98.3 98.1 97.9 98.1 98.2 98.3
Purity (%) 96.8 97.6 96.1 96.7 98.0 99.1 99.2

Finding
Success rate 83.3 90.2 71.6 84.3 91.8 92.0 97.5
(%)
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DBSCAN using elliptical neighborhood

+Circular neighborhood is replaced with an elliptical neighborhood

+Local orientation of each point is determined based on PCA considering
points within its neighborhood

Parameters ____|_Meaning__ value

eps_major long axis 15cm
eps_minor short axis 10cm
min_samples min neighbors 3

k (orientation calculation) neighbors for PCA 5
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Split cluster via abnormal point

+ Abnormal point detection:

= large di-angle between direction of PCA and direction to the IP
¢ Further attempts:

= assign large weight for hits in the same superlayer

= veto hits in the same payer, same superlayer but another group

EllpTic DBSCAN Neighborhoods Elliptic DBSCAN Neighborhoods with Phi Constraint
(eps_major=15, eps_minor=2, min_samples=3) (eps_major=15, eps_minor=2, min_samples=3,eventid=147)
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Object Condensation(OC) using GNN

Linear layers (LL) e .

—— Forward connec! tion " ELU activation GravNet block : :
i i GravNet layer Output
Batchnorm layer Outputlavers
» Skip connection J (BNL) P e Object condensation layers

U S w3 @
Detector hits E o o - ARRAAARANARASS 3 - ' o : : s S E g
co e input matrix : A uz ' ' ﬁ 5 pvawe | § :
e B | (= M 2 H H H T e
— ;.3 ::3 :3 —> LL —= LL &> LL —)BNL"-) LL —>» BNL —_ — w Track paral:leter layers
¢ Input feature: x and y coordinates of hits, layer, superlayer, ADC and TDC B e

¢ Network structure:
= Initial LL with ELU activation and batch normalization.
= Multiple stacked GravNet blocks with skip connections. Each block includes :
o A GravNet layer(GNN layer) that learns a latent space to determine neighborhood relationships
and pass message.
e Linear layers (LL) and batch normalization layers (BNL).

m Final LL to generate output representations
¢ Output;

= Object condensation layers :
o Cluster coordinates (for grouping hits belonging to the same track).

e 3-values (confidence scores for cluster centers).
= Track parameter prediction layers: g, px, Py, Pz Vx, Py, V5

Comput.Softw.Big Sci. 9 (2025) 1, 6
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Track finding result via OC

O circling track -

0

0 scattered track.
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OC clustering results
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Comparison of GNN and OC

+0OC clustering efficiency is higher than GNN
+Attempts to improve fitting rate: keep 1t circle or the part before scattering

I N

better short track reconstruction
low momentum circling track event: than BESIII
(pt<200MeV) bad clustering quality circling track event: good clustering
efficiency but might fail in fitting

large angle scattering fail in clustering, 2%-3%

high momentum crossing tracks fail in clustering, 1%

large angle scattering fail in fitting, 3%-4%
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Summary

+A novel tracking algorithm prototype based on machine learning method
at BESIIl is under development

= GNN to distinguish the hit-on-track from noise hits.
= Clustering method based on DBSCAN and RANSAC to cluster hits from
multiple tracks

#Preliminary results on MC data shows promising performance

+Outlook
= Further optimization: circular, scattering..

= Performance verification concerning events with more tracks and long
lived particle

= Check the reconstruction time consumption



