

Simulation of beam background on STCF

STCF 2025

2025.7.3 @ 湘潭

Mingyi Liu, Zhujun Fang (USTC) On behalf of the STCF-FWR Group

nh196245@ustc.edu.cn

- Lattice and Collimator design.
- Layout of the Machine-Detector-Interface (MDI) on STCF.
- Beam background simulation.
- Deposits on detector evaluation (e.g.: TID, NIEL, Count rate, etc.).
- Summary.

Lattice of the accelerator

Layout of the MDI

• Length of major magnets:

- ✓ QD0: L=0.4m, k=-1.6298 T/m; (The first SC defocus Quadrupole)
- ✓ QF1: L=0.3m, k=0.9593 T/m; (The second SC focus Quadrupole)
- B0: L=1.0m, θ=1.0°; (Bending dipole, causing unavoidable dispersion, as weak as possible, adjusting position to reduce beam background)
- ✓ QD2: L=0.3m; (defocus quadrupole); QF3: L=0.3m; (focus quadrupole)

Under updating and iterating:

- 1) Distance between IP and cryostat?
- 2) Y-chamber mechanic structure?
- 3) Shield layers, geometry conflict?
- 4) Compensating solenoid magnet?
- 5) Location of Luminosity-monitor, ZDD?

. . .

Beam background

100

- Beam background in MDI
 - ✓ Pure beam-related background

- ✓ Luminosity-related background
 - **\square**Radiative Bhabha scattering: $e^+e^- \rightarrow e^+e^-(n)\gamma$

Two-photon processes:
$$e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow e^+e^-X$$

Collimator

■About collimator:

✓ Inside beam pipe, scrape off-orbit particles before IR
✓ Horizontal(H) and vertical(V)

Trapezoid structure to reduce impedance

Collimator designed in v7c3 (H×2, V×2) Less accelerator details considered

Name	Orientation	Limitation	Design	
		<u>Rmax</u> /mm	Zmid/m	R/mm
CoH01	Hor.	78.63	-45.0	15
CoH02	Hor.	78.70	-56.0	15
CoV01	Ver.	9.40	-19.2	7
CoV02	Ver.	9.32	-31.0	7

Optimized based on Touschek and Beam-Ciasti (USTC)

VS

Background simulation: overview

Luminosity background:

- Available MC generators
- □ Touschek & Beam-gas background:
 - SAD developed by KEK
 - Sampling with cross section
 - Collimator simply act as narrower sized aperture

D MDI interaction and detector :

• Geant4 (Under Oscar)

		IP :	£ 10 m
Category	Generator	v7c3 loss rate (MHz)	v12_b loss rate (MHz)
RBB ($\theta_{min} = 4.47 mrad$)	Babayaga/BBBREM	<i>e</i> [±] (γ): 5	98 (170)
Two photon	DIAG36	10	30
Touschek	SAD	2120	1000
Beam-Gas	SAD	Coul: 2.5; Brem: 4.2	Coul: 5700; Brem: 2.6

Promising beam lifetime from v12_b: > 400 s

Distribution of the beam background: v12_b

External shield design for MDI

- Further reduce beam background (Especially for ITK)
- Experience from Belle II
- Tungsten (W) shield layer in MDI
- Design based on simulation
- To reduce background to an order of magnitude
- Tungsten layer to reduce e^{\pm} , γ
- (Composites) layer for neutron shielding

□Current shield layer design

Background sources

- Beam-gas effect contributes most of the backgrounds ~75%
- Touschek effect play the sub-dominant role ~20%
- The contributions from electron/positron are almost the same

TID, NIEL, Counting rate (Test based on ITKW)

Beam background deposit in detector

v1	2	b

v7c3

DET	TID	NIEL	COUNT
ITKW1	14443.53	5.17E+11	3.93E+09
ITKW2	1273.549	3.58E+11	3.97E+09
ITKW3	501.7721	3.59E+11	2.53E+09
MDC	19.87113	2.03E+14	2.01E+09
RICH	6.737757	7.68E+10	2.37E+09
DTOF	5.891739	5.87E+10	1.61E+09
ECAL-B	3.314257	9.19E+10	1.18E+09
ECAL-E	2.41883	3.19E+10	2.51E+08
MUD-B-RPC	0.014406	3.77E+09	51270400
MUD-B-PS	0.008066	9.12E+10	2.67E+08
MUD-E-RPC	0.004583	7.38E+08	10948000
MUD-E-PS	0.003732	1.11E+10	83901100

~50 times higher

	Detector	TID value	NIEL damage	Total count rate
_		(Gy·y-1)	$(1 \text{ MeV neutron} \cdot \text{cm}^2 \cdot \text{y}^1)$	(HZ)
	ITKW-1	260	1.7×10^{10}	3.8×10^{8}
	ITKW-2	25	8.3×10^{9}	1.1×10^{8}
	ITKW-3	9.0	9.5×10^{9}	7.1×10^{7}
	ITKM-1	4700	$3.4 imes 10^{10}$	2.0×10^{8}
	ITKM-2	47	7.9×10^{9}	3.7×10^{7}
	ITKM-3	18	1.1×10^{10}	3.3×10^{7}
	MDC	0.17	3.6×10 ¹³	3.3×10^{8}
-	PID-Barrel (RICH)	0.33	9.5×10^{9}	2.0×10^{8}
	PID-Endcap (DTOF)	1.0	1.6×10^{10}	2.9×10^{8}
]	ECAL-Barrel	0.36	$1.6 imes 10^{10}$	6.7×10^{8}
F	ECAL-Endcap	0.69	$1.7 imes 10^{10}$	3.5×10^{8}
]	MUD-Barrel- RPC	0.013	1.8×10^{9}	1.0×10^{7}
]	MUD-Barrel- Scintillator	0.0036	4.6×10 ¹⁰	6.1×10 ⁷
N	/IUD-Endcap- RPC	0.0037	2.8×10^{8}	1.9×10 ⁶
N	/IUD-Endcap- Scintillator	0.0023	1.1×10^{10}	7.1×10^{6}

Remove beam-gas contribution

Remove beam-gas contribution

v12_b

V	7	С	3

DET	TID	NIEL	COUNT
ITKW1	1247.063	4.66E+10	1.41E+09
ITKW2	112.9324	3.71E+10	4.46E+08
ITKW3	48.54022	3.66E+10	2.69E+08
MDC	2.199967	2.77E+13	2.22E+08
RICH	0.697994	8.82E+09	2.28E+08
DTOF	0.68983	1E+10	2.02E+08
ECAL-B	0.362049	1.09E+10	98363900
ECAL-E	0.428233	7.67E+09	34519000
MUD-B-RPC	0.002322	7.18E+08	10223600
MUD-B-PS	0.002332	1.86E+10	61534100
MUD-E-RPC	0.001177	2.25E+08	2580800
MUD-E-PS	0.001322	3.93E+09	28240000

~5 times higher (Especially ITK)

Detector	TID value	NIEL damage	Total count rate
Detector	(Gy·y ⁻¹)	$(1 \text{ MeV neutron} \cdot \text{cm}^{-2} \cdot \text{y}^{-1})$	(Hz)
ITKW-1	260	$1.7 imes 10^{10}$	3.8×10^{8}
ITKW-2	25	8.3×10^{9}	1.1×10^{8}
ITKW-3	9.0	9.5×10^{9}	7.1×10^{7}
ITKM-1	4700	3.4×10^{10}	2.0×10^{8}
ITKM-2	47	7.9×10^{9}	3.7×10^{7}
ITKM-3	18	1.1×10^{10}	3.3×10^{7}
MDC	0.17	3.6×10 ¹³	3.3×10^{8}
PID-Barre (RICH)	0.33	9.5×10 ⁹	2.0×10^{8}
PID-Endca (DTOF)	np 1.0	1.6×10^{10}	2.9×10^{8}
ECAL-Bar	rel 0.36	$1.6 imes 10^{10}$	6.7×10^{8}
ECAL-Endo	cap 0.69	$1.7 imes 10^{10}$	3.5×10^{8}
MUD-Barro RPC	el- 0.013	1.8×10^{9}	1.0×10^{7}
MUD-Barro Scintillato	el- 0.0036	4.6×10 ¹⁰	6.1×10 ⁷
MUD-Endc RPC	ap- 0.0037	2.8×10^{8}	1.9×10^{6}
MUD-Endc Scintillato	ap- or 0.0023	1.1×10 ¹⁰	7.1×10^{6}

Reason for higher beam background: shield

- Due to iteration of the beam pipe design, geometry conflict occurs between beam pipe and external shield in version v7c3.
- Much narrower aperture size currently \rightarrow More beam background generated.
- Thus, no external shield within 0.6 m range currently \rightarrow More beam background survive.
- Need to place back the hollow cone shield around beam pipe, as pipe geometry fixed 45

- New design of Lattice and collimator.
- Much higher beam background yield in detector than CDR standard
- Caused by: lack of Beam-gas collimator and inner shield.
- Next step:
 - Collimator iteration.
 - Fix the design of beam pipe (especially the Y-chamber).
 - Place back the hollow cone shield around beam pipe.

Thanks!

Backup

stcf_v4.3_2GeV_2A_nux0.543_nuy0.58.sad

Beam Energy	2 GeV
Circumference	860.3 m
Beam Current	2 A
Bunch Number	688
Harmonic number	1434
Emittance in x(y)	4.65e-9 (4.65e-11) mrad
Betax(y) at IP	0.06 (0.0008)
Crossangle	30 mrad
alfap	1.348e-3
energy spread	7.85e-4

Collimator efficiency

	Total rate (MHz)	Rate in IP ± 10 m (MHz)
Touschek	66574.30	1032.03
Coulomb	10.87	0.26
Bremsstrahlung	6089.55	5734.24

Touschek & Beam-gas background

- For G4 simulation, the injection points of particles are projected to the inner wall of beam pipe.
- Coordinates transformation: from accelerator to detector (for both positions and momentums, including rotation & translation).

Iteration for external shield layer design

External shield design for MDI – v7c3

Shield efficiency

	ITK Region (W)	Endcap region (W)	Division	V
•	Hollow cone around	Envelop surrounding	ITKW1	
•	beam pipe Double disc lavers	stainless shield (Both	ITKW2	İ
			ITKW3	
		Pink: tungsten shield	MDC	
		15 degree Yellow & Red: cryostat	RICH	
			DTOF	
	Φ 60 mm	30 mrad	ECAL-B	
		Φ 38 mm	ECAL-E	
	<		MUD-B-RPC	
	589 mm		MUD-B-PS	
			MUD-E-RPC	
	Effectively suppres	ss the beam background	MUD-F-PS	

Mingyi (USTC)

Division	With/No shield
ITKW1	29%
ITKW2	9%
ITKW3	4%
MDC	3%
RICH	4%
DTOF	4%
ECAL-B	2%
ECAL-E	13%
MUD-B-RPC	56%
MUD-B-PS	56%
MUD-E-RPC	66%
MUD-E-PS	122%
	23

Beam background deposit in detector

- Major statistics of
 - ✓ Total Ionizing Dose (TID)
 - ✓ Non-Ionizing Energy Loss (NIEL)
 - ✓ Counting rate
 - ✓ Single Event Effects (SEE)
 - ✓ Neutron spectrum & distribution
 - ✓ Particle types

✓ ...

Algorithm for NIEL simulation

Based on Oscar

- Construct Displacement function f(PDG, E)
- Choose dedicated energy region for n, p
- For particles enter sensitive regions, obtain the NIEL via interpolation
- Only consider n, p with energy larger than 158 eV

Last version of lattice (v7c3)

□ 探测器本底水平

Detector	TID value NIEL damage		Total count rate
Detector	$(Gy \cdot y^{-1})$	$(1 \text{ MeV neutron} \cdot \text{cm}^{-2} \cdot \text{y}^{-1})$	(Hz)
ITKW-1	260	$1.7 imes 10^{10}$	3.8×10^{8}
ITKW-2	25	8.3×10^{9}	1.1×10^{8}
ITKW-3	9.0	9.5×10^{9}	7.1×10^{7}
ITKM-1	4700	3.4×10^{10}	$2.0 imes 10^{8}$
ITKM-2	47	7.9×10^{9}	3.7×10^{7}
ITKM-3	18	$1.1 imes 10^{10}$	3.3×10^{7}
MDC	0.17	3.6×10^{13}	3.3×10^{8}
PID-Barrel (RICH)	0.33	9.5×10°	2.0×10^{8}
PID-Endcap (DTOF)	1.0	1.6×10^{10}	2.9×10 ⁸
ECAL-Barrel	0.36	$1.6 imes 10^{10}$	$6.7 imes 10^{8}$
ECAL-Endcap	0.69	$1.7 imes 10^{10}$	3.5×10^{8}
MUD-Barrel- RPC	0.013	1.8×10 ⁹	1.0×10^{7}
MUD-Barrel- Scintillator	0.0036	$4.6 imes 10^{10}$	6.1×10 ⁷
MUD-Endcap- RPC	0.0037	2.8×10^{8}	1.9×10^{6}
MUD-Endcap- Scintillator	0.0023	1.1×10^{10}	7.1×10^{6}

□ 电子学芯片本底水平

Electronic system	TID value	NIEL damage	SEEs
	(Gy·y ⁻¹)	$(1 \text{ MeV neutron} \cdot \text{cm} - 2 \cdot \text{y}^{-1})$	$(cm^{-2} \cdot y^{-1})$
ITKW-1	34	5.4×10^{9}	0
ITKW-2	11	6.3×10^{9}	0
ITKW-3	5.7	$1.0 imes 10^{10}$	0
ITKM-1	1200	$4.5 imes 10^{10}$	0
ITKM-2	28	7.3×10^{9}	0
ITKM-3	11	$1.0 imes 10^{10}$	0
MDC	1.3	6.7×10^{9}	0
PID-Barrel (RICH)	1.7	7.8×10^{9}	0
PID-Endcap (DTOF)	1.1	1.5×10^{9}	0
ECAL-Barrel	0.034	8.5×10 ⁸	0
ECAL-Endcap	0.1	1.5×10^{9}	0
MUD	0.2	1.8×10^{9}	0

□ 整体本底水平略低于CDR数据