STCF MUON探测器研究进展

李锋 代表STCF缪子探测器组 2025-07-04

概述 塑闪探测器 RPC探测器 读出电子学

- ASIC芯片
- 小结

基准设计方案:

Z. Fang et al 2021 JINST 16 P09022

- RPC + 塑料闪烁体PS
- 内三层为RPC: 对本底不敏感
- 外七层为PS: 对强子探测、鉴别灵敏

性能指标:

- 探测效率达到95%
- π误判为μ的概率<3%
- 探测系统时间精度<500ps
- 单通道事例率达到100kHz

塑闪探测器: 夹具、SiPM适配板

- 优化迭代夹具、SiPM适配板等,配合机械支撑结构设计的优化
- 夹具更新到第4版,适配板更新3版

University of Science and Technology of Cl

适配板40mm*10mm

适配板36mm*10mm

塑闪探测器:单元入射角研究

STE

样机测试、方案研究中,指标性能的测定要与对撞机中情形一致

端盖:

Type o: 距离SiPM越远, 更多事例入射角越小

Type 1: 无明显增/减趋势

桶部

- Typeo: 击中距离SiPM越远, 越接近垂直入射
- Type2: 塑闪条中段有大量垂直入射事例

塑闪探测器: 板级数据采集系统测试

START

STOPO

STOP1 STOP2 STOP3 STOP4 STOP5

STOP6 STOP7 STOP8 STOP9 STOP10

STOP14 STOP15

多通道 (16) 数据采集板与塑闪联合测试,并与CAEN-DT5742商用器件结果一致

样品: 4cm * 1cm * 50cm 塑闪条, 内嵌光纤

塑闪探测器:长塑闪单元

4cm * 1cm * 200cm (或240cm)
 反射层: 喷涂TiO2
 波长位移光纤: Kuraray Y-11, φ = 1mn
 SiPM: sensl, J-30035, 3*3mm
 单端读出

塑闪探测器: 平板样机V1

·第一版平板样机:

- 塑闪单元尺寸: 50*4*1cm
- 平板样机尺寸: 53*51cm
- •2层、单端读出

·第二版平板样机:

- •开始考虑工程实际的约束条件
- 机械支撑结构、接口、器件等迭代优化
- 两层单端读出塑闪条, 十字交叉

塑闪探测器:质量控制 (QC) 系统搭建

 \diamond

- ♦ QC 数据库<mark>雏形</mark>:
 - 塑料闪烁体探单元:元器件较多
- 平板样机由多个单元拼接组成

◆ 交互界面,收集、展示、查询:

使用网站数据库系统

每一个单元、探测器模块用到的器件状态、负责人、组装时的状态记录等

MUON PS	Home				
PS Module	Welcome to MUON PS Quali	ty Control Database	e		
PS Strip	Hello Zhang Jing-he	MUON PS	Home	Welcome to MUON PS Quality Control Database	Log off
FE Board		PS Module 🗸	S1P.	M Information	
SiPM		PS Strip ~	Index		
		FE Board \checkmark	Time	yyyy-MM-dd HH:mm:ss	
		SiPM	Type		
			Operator		
		(Comment		
			Photo	Ť	
		-		立即提交 重置 ▼	

计划结合今年验收样机的研制过程,走通、优化流程和组织方式

RPC——模拟研究

- 开展了探测器特性阻抗模拟研究,计算了不同条宽、不同板厚下的阻抗值
 - 读出条宽度由25mm增加到38mm
 - 上层蜂窝板厚度由3mm增加到12mm
- 开展了信号传输的模拟研究,模拟了信号的传输和串扰
 - 实现对不同输入波形进行传播仿真
 - 实现RPC参数可调,例:阻抗、读出条长度等

RPC: 原型探测器设计、材料加工

- 设计了40×40cm玻璃电极RPC原型探测器
 - 气隙封闭结构的边框设计
 - 双端读出的pcb设计:读出条间距40mm (38+2mm)
- 完成了探测器材料的加工
 - 边框和垫片加工,厚度分别为1.2mm、1.4mm、1.6mm
 - 蜂窝结构读出板压合

Honeycomb readout panel

RPC: 原型探测器制作

- 研究不同气隙厚度的原型探测器
 - 采用自动设备进行垫片排布、点胶;边框涂胶操作
 - 气隙结构在大理石平台上抽真空固化
 - 喷涂石墨高压电极
 - 外层覆盖PET绝缘膜
 - 气密性测试:加压+3mbar,保压测试
- 1.2mm气隙厚度的原型探测器完成了高压锻炼
- 工作气体:氟利昂 94.7%、异丁烷 5%、六氟化硫 0.3%

HV electrode painting

• 高压下I-V曲线

Gas gap with spacers

Curing in vacuur

University of Science and Technology of China

研究低阻玻璃的电阻率变迁

• 低阻玻璃材料获取(非定制)

获取的浮法玻璃样品电阻率分布比较广泛 10E9-10E11 ρ/Ω·cm区间体电阻率,预计能满足玻璃RPC高计数率指标

玻璃编号	厚度	R1	R2	ρ/Ω·cm	
2-1#	0.70mm	2.30GΩ	2.53GΩ	1.57E+12	
2-2#	0.72mm	32.30MΩ	32.36MΩ	2.04E+10	
2-3#	0.70mm	23.24MΩ	23.10ΜΩ	1.50E+10	
2-4#	0.52mm	0.90ΜΩ	0.92MΩ	7.94E+8	
2-5#	0.75mm	6.05GΩ	6.10GΩ	3.67E+12	
2-6#	0.62mm	1.81	MΩ	1.32E+9	

低阻玻璃电阻率变迁测试样品 两面石墨电极,导向引出电极,并封装保护

• 低阻玻璃材料的阻性稳定性测试

低阻玻璃小样品高压测试,研究长期电流积分后,是否有潜在的离子迁移,造成玻

璃的体电阻率变迁。 (期望阻性稳定不变)

- 完成两个40cm*40cm低阻玻璃气室设计和制作
 - a) 电阻率1.27E+9 Ω·cm
 - b) 电阻率1.50E+10Ω·cm
- 完成气室闭气实验和高压老化实验

🍘 中国 辦学技术大学

RPC读出电极匹配前放

RPC: 低阻玻璃RPC

- RPC尺寸系列化:
 - A4 (0.125平米), A3 (0.25平米), A2 (0.50平米)
 - ,用较小面积RPC快速迭代;研发期间的探测器机械部件的备件互换。
 - 完成A4, A3 规格的读出条板设计和制作
 - 完成A4, A3规格的玻璃气室制作工艺验证
- 低阻玻璃RPC:
 - 完成了A4, A3规格的低阻玻璃气室制作
 - 高压训练,未发现低阻玻璃替代电木引起的暗电流显著异常。
- 低阻玻璃RPC模块的验证性测试
 - RPC感应信号直连示波器

- 第一批次: 幅面尺寸A3的低阻玻璃RPC (2套, 损坏一套)
 - 完成对应幅面的感应条结构的设计制作。
 - 完成对应幅面的气室封边结构的设计制作。
 - 与前端放大器模块进行了适配,联合塑料闪烁体测试了宇宙线击中。
- 第二批次:5套幅面尺寸A3的低阻玻璃气室(25年6月底已完成气室组装)
 - 复用第一批次的感应条电极板和气室封边结构。
 - 与新一版读出电子学TDC联合调试。
 - 计划探测效率-噪声测试,优化工作电压点。
 - 计划实测饱和计数率。
- 第三批次(计划):幅面尺寸140*40,低阻玻璃玻璃物料已切 割准备。

•为塑闪探测器设计了多款SiPM适配板、前放板、定时电路、SiPM 电源分发板以及数据读出板

<image>

12路放大器板

定时甄别板

兰大塑闪探测器实物图

START STOPo STOP1 STOP₂ STOP3 STOP4 STOP5 STOP6 STOP7 STOP8 STOP9 STOP10

• • •

STOP14

STOP15

测试板实物图

基于FPGA的板级系统

32通道电子学测试现场

COM9 OPENED, 9600, 8, NONE, 1

(1) 各个通道的效率 (以start通道以及stop14、stop15做符合)

START阈值为35mV,前端板STOP阈值为10mV

	STOPo	STOP1	STOP2	STOP3	STOP4	STOP5	STOP6	STOP7	STOP8	STOP9	STOP10	STOP11	STOP12	STOP13
效率	99.1%	98.4%	98.2%	97.8%	96.1%	98.1%	98.1%	98.1%	97.4%	98.1%	98.3%	98.5%	99.0%	99.3%

START阈值为35mV,前端板STOP阈值为5mV

	STOPo	STOP1	STOP2	STOP3	STOP4	STOP5	STOP6	STOP7	STOP8	STOP9	STOP10	STOP11	STOP12	STOP13
效率	99.2%	98.9%	98.3%	98.1%	97.8%	98.5%	98.6%	98.3%	98.4%	98.6%	98.7%	95.8%	99.1%	99.4%

(2) 单通道时间分辨

•研制了基于射频晶体管和跨阻放大器的多种前端电路,用于RPC信 号读出和测试,并进行了现场实验,对信号配接放大、定时、串扰 等进行了初步研究

前放读出板 (焊接)

🏐 中国 耕 孕 投 求 大 孕

<mark>射频放大器</mark>: ADL5545 (60mV 1ns左右上升沿)

<mark>跨阻放大器</mark>: OPA847(100mV,2ns上升沿)

22

23

• 2024 年流片:前端(放大+成形+甄别)芯片,TDC芯片。

- 单通道前端放大定时ASIC: 6种不同的配置
 - •针对40pF-160pF、300pF输入电容范围进行了优化
 - 固定增益、增益可配置

◆ 基本完成第一次流片测试

前端芯片绑线

芯片测试板

TDC绑线

前端芯片测试平台

Kintex-7控制板及TDC测试板

模拟输出(下)及定时输出(上)

双通道信号源测精度: 62ps

time interval/ps

TDC 芯片功耗:约19.8mW

SiPM前端芯片V2 (类VMM结构)

RPC前端芯片 (TIA+甄别器)

() 中国科学技术大学

TDC V2 (8通道,差分延迟链, 串行读出)

PLL:为TDC提供外部时钟 (280-360MHz)

LDO: 1.2V@100mA

- RPC探测器
 - 低阻玻璃RPC性能验证测试
 - •制作A2规格低阻玻璃RPC (40*140cm,满足大面积、大尺寸要求)
- 塑闪探测器
 - •大面积平板探测器机械支撑结构研制
 - 目前0.5米*0.5米小型验证
 - 开展了长塑闪条的宇宙线测试
 - 规划验证~0.5米*2米尺寸的机械结构
- ・电子学
 - •为两种探测器方案设计信号读出系统,开展样机测试
 - ASIC第一版流片测试完成,已优化设计提交第二次流片

谢谢各位专家!

