Some estimates of exotic production at STCF

Yi-Lin Song

Institute of Theoritical Physics Chinese Academy of Sciences

July 3, 2025

What we expect at STCF: Searching for Exotic States

- C. M. energy range: $2 \sim 7 \text{ GeV}$
- Integrated luminosity: 1 ab⁻¹ per year
- Ideal place to study exotic states containing a $c\bar{c}$
- \rightarrow Two $c\bar{c}$ state X(6200)? X. K. Dong et al., PRL (2021) PhysRevD.111.034038

Lattice QCD: Geng Li et al., arXiv.2505.24213

 $\bullet \ \rightarrow {\rm Hidden \ charm \ baryons} \ P_c$

1. Existence of X(6200) from double Jpsi Spectrum

2. Estimates of X(6200) Production at STCF

3. Production of Jpsi, proton and anti-proton in electron-positron collisions

1. Existence of $X(6200)\ {\rm from\ double\ Jpsi\ Spectrum}$

- **2.** Estimates of X(6200) Production at STCF
- 3. Production of Jpsi, proton and anti-proton in electron-positron collisions

	Energy range of interest:
	6.2-7.1 GeV
- T I	Two Coupled-Channel Models:
	• $\{J/\psi J/\psi, J/\psi \psi(2S)\}$
	• $\{J/\psi J/\psi, J/\psi \psi(2S),$
T T T T T T T T T T T T T T T T T T T	$J/\psi\psi(3770)\}$
ŧŧŦĸŧŦŧŧ	X. K. Dong et al., Phys. Rev. Lett. 126, 132001 (2021)
8.5 9.0	

Channel	$J/\psi J/\psi$	$J/\psi h_c$	$J/\psi\psi(2S)$	$\chi_{c0}\chi_{c0}$	$\chi_{c0}\chi_{c1}$	$J/\psi\psi(3770)$	$\chi_{c1}\chi_{c1}$	$h_c h_c$	$\chi_{c2}\chi_{c2}$
Threshold	6.194	6.622	6.783	6.830	6.925	6.870	7.021	7.051	7.132
Model	2 and 3 ch.		2 and 3 ch.			3 ch.			

Coupled-Channel Formalism

X. K. Dong et al., Phys. Rev. Lett. 126, 132001 (2021)

G

$$\begin{split} V_{\rm 2ch}(E) &= \begin{pmatrix} a_1 + b_1 k_1^2 & c \\ c & a_2 + b_2 k_2^2 \end{pmatrix}, & \bullet \mbox{ shor} P(E) \\ &\bullet \mbox{ diffe} \\ \{\alpha_i, \\ V_{\rm 3ch}(E) &= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}, & \bullet \ \beta_1 &= \\ GeV \\ \mathcal{M}_1 &= P(E)(b + G_1 T_{11} + \sum_{i=2,3} r_i G_i T_{1i}) \\ T(E) &= V(E) \cdot [1 - G(E) \cdot V(E)]^{-1}, & \bullet \ \mbox{ a point constraints} \\ I(E) &= i \int \frac{d^4 q}{(2\pi)^4} \frac{1}{(q^2 - m_{i1}^2 + i\epsilon)[(P - q)^2 - m_{i2}^2 + i\epsilon]} \end{split}$$

- short-distance source function $P(E) = \alpha e^{-\beta E^2}$
- different background parameters $\{\alpha_i,\beta_i\}$ for different data sets
- $\beta_1=0.012,\beta_2=0.020,\beta_3=0.056,$ (in GeV^-2) determined from high energy tail
- a possible violation of unitarity in the inclusive production amplitude $b \neq 1$

• Combined fitting
$$\chi^2 = \sum_j \chi_j^2$$

Results

• Riemann sheet $R_{...}$ is defined by signs of $Imk_i s$

1. Existence of X(6200) from double Jpsi Spectrum

2. Estimates of $X(6200)\ \mathrm{Production}\ \mathrm{at}\ \mathrm{STCF}$

3. Production of Jpsi, proton and anti-proton in electron-positron collisions

$X(6200) \rightarrow e^+e^-$ width and its production in e^+e^- annihilation

Nucl. Phys. B 157, 125-144 (1979) JHEP 02, 032 (2016)

	Two-channel bound state	Two-channel virtual state or resonance	Three-channel fit 1	Three-channel fit 2
$ g_X $ [GeV]	[7.04, 9.87]	[10.64, 15.25]	[19.05, 21.92]	[10.36, 14.79]
$\Gamma^{ee}_{X_2(6200)}$ [eV]	[0.002, 0.004]	[0.005, 0.010]	[0.016, 0.022]	[0.005, 0.010]

10/17

$X(6200) \rightarrow e^+e^-$ width and its production in e^+e^- annihilation

 \rightarrow Events: 10^{6} - 10^{8} per year

- 1. Existence of X(6200) from double Jpsi Spectrum
- **2.** Estimates of X(6200) Production at STCF
- 3. Production of Jpsi, proton and anti-proton in electron-positron collisions

Production of $J/\psi p\bar{p}$ in electron-positron collisions

$$\mathcal{A}(e^+e^- \to J/\psi p\bar{p}) \sim \mathcal{A}(e^+e^- \to J/\psi gg) \otimes \mathcal{A}(gg \to p\bar{p}), \tag{1}$$

$$\mathcal{A}(J/\psi \to \gamma p\bar{p}) \sim \mathcal{A}(J/\psi \to \gamma gg) \otimes \mathcal{A}(gg \to p\bar{p}), \qquad (2)$$

$$\frac{\sigma(e^+e^- \to J/\psi p\bar{p})}{\Gamma(J/\psi \to \gamma p\bar{p})} \approx \frac{\sigma(e^+e^- \to J/\psi gg)}{\Gamma(J/\psi \to \gamma gg)},\tag{3}$$

$e^+e^- \rightarrow J/\psi gg$ in NRQCD Framework

• For c.m. Energy 6-7 GeV and to LO:

$$\sigma(e^+e^- \to J/\psi gg) = \mathcal{O}(1 \text{ pb}) \tag{4}$$

$$\mathcal{B}(J/\psi \to \gamma gg) = (8.8 \pm 1.1)\%, \mathcal{B}(J/\psi \to \gamma p\bar{p}) = (3.8 \pm 1.0) \times 10^{-4},$$
(5)

we get

$$\sigma(e^+e^- \to J/\psi p\bar{p}) \approx \sigma(e^+e^- \to J/\psi gg) \times 4 \times 10^{-3}.$$
(6)

$$\sigma(e^+e^- \to J/\psi p\bar{p}) = \mathcal{O}(4 \text{ fb}).$$
(7)

- at STCF: annually integrated luminosity of 1 ab $^{-1} \to \mathcal{O}(4 \times 10^3) \; J/\psi p \bar{p}$ events
- Hidden charm Pentaquarks: Assuming $\mathcal{B}(P_c \to J/\psi p) \sim 0.01$

$$\sigma(e^+e^- \to P_c\bar{p}) \lesssim \frac{\sigma(e^+e^- \to J/\psi p\bar{p})}{\mathcal{B}(P_c \to J/\psi p)} = \mathcal{O}(0.1 \text{ pb}), \tag{8}$$

• $\lesssim \mathcal{O}(10^5) \; P_c \bar{p}$ events

$P_{\boldsymbol{c}}$ production in open-charm channels

$$P_c \rightarrow \Lambda_c \bar{D}^{(*)}$$
 , $P_c \rightarrow \Sigma_c^{(*)} \bar{D}^{(*)}$

• $P_c \rightarrow$ open-charm more easily than $J/\psi nn$ $_{\rm Nucl. Phys. A 954, 393 (2016)}$ $_{\rm Phys. Rev. D 100, 056005 (2019)}$ _ JHEP 08 (8), 157

• P_c couples strongly to its molecular components

$oldsymbol{D}^{\pm}$	$K^0_S \; \pi^+$	$(1.562\pm 0.031)\%$	$oldsymbol{D}^0$	$K^{-}\pi^{+}$	$(3.950\pm 0.031)\%$	$\mathbf{\Lambda}_{c}^{+}$	pK_S^0	$(1.59 \pm 0.08)\%$
	$K^0_L \pi^+$	$(1.46 \pm 0.05)\%$		$K^0_S \; \pi^0$	$(1.240 \pm 0.022)\%$		$pK^{-}\pi^{+}$	$(6.28 \pm 0.32)\%$
	$K^{-}2 \pi^{+}$	$(9.38 \pm 0.16)\%$		$K^0_S \ \pi^+\pi^-$	$(2.80\pm 0.18)\%$		$\Lambda\pi^+$	$(1.30 \pm 0.07)\%$
	$K^0_S \ \pi^+\pi^0$	$(7.36 \pm 0.21)\%$		$K^{-}\pi^{+}\pi^{0}$	$(14.4\pm0.5)\%$		$\Lambda\pi^+\pi^0$	$(7.1\pm0.4)\%$

- $\bullet~X(6200)$ from combined double J/ψ spectra analysis
- tensor $X(6200) \ 10^6\mathchar`-10^8$ events per year but the scalar ones can not be observed at STCF
- $\mathcal{O}(4\times 10^3)~J/\psi p\bar{p}$ events and $\lesssim \mathcal{O}(10^5)~P_c\bar{p}$ events
- P_c should also be searched in open-charm final states

Thanks for your attention

Back Up

 $J/\psi\psi(2S)$ Line Shape

three-channel fit	α_3	b	χ^2/dof
fit 1	2441^{+657}_{-720}	$1.71\substack{+0.30\\-0.16}$	0.08
fit 2	2072_{-646}^{+597}	$2.04\substack{+0.38 \\ -0.19}$	0.29

Compositeness of the X(6200)ERE in $J/\psi J/\psi$ channel:

$$T(k) = -8\pi \sqrt{s} \left[\frac{1}{a_0} + \frac{1}{2} r_0 k^2 - i \, k + \mathcal{O}(k^4) \right]^{-1}$$

Compositeness:

$$\bar{X}_A = (1+2|r_0/a_0|)^{-1/2}$$

Matuschek et al.'2021

	Two-channel	Three-channel	Three-channel
	$_{ m fit}$	fit 1	fit 2
$a_0(\mathrm{fm})$	$\leq -0.31 \mbox{ or } \geq 0.78$	$-0.52^{+0.07}_{-0.08}$	$1.63\substack{+0.75\\-0.38}$
$r_0({ m fm})$	$-1.75\substack{+0.16\\-0.48}$	$-0.05\substack{+0.01\\-0.01}$	$-0.08\substack{+0.02\\-0.02}$
\bar{X}_A	$0.37\substack{+0.62\\-0.09}$	$0.92\substack{+0.02\\-0.02}$	$0.95\substack{+0.02\\-0.02}$

NRQCD

G. T. Bodwin Phys. Rev. D 51, 1125 (1995)

- An effective field theory involving heavy quarks
- Energy seperation: M from Mv, Mv^2, Λ_{QCD}

$$\mathcal{L}_{\mathsf{NRQCD}} = \mathcal{L}_{\mathsf{light}} + \mathcal{L}_{\mathsf{heavy}} + \delta \mathcal{L}$$
(9)

$$\mathcal{L}_{\text{light}} = -\frac{1}{2} Tr(G_{\mu\nu}G^{\mu\nu}) + \sum \bar{q}i \not\!\!\!Dq \qquad (10)$$

$$\mathcal{L}_{\text{heavy}} = \psi^{\dagger} \left(iD_t + \frac{\mathbf{D}^2}{2M} \right) \psi + \chi^{\dagger} \left(iD_t - \frac{\mathbf{D}^2}{2M} \right) \chi \tag{11}$$

• $Q\bar{Q} \rightarrow Q\bar{Q}$:

$$\delta \mathcal{L}_{4-fermion} = \sum_{n} \frac{f_n(\Lambda)}{M^{d_n - 4}} \mathcal{O}_n \tag{12}$$

NRQCD

• For dimension-6:

$$\begin{split} (\delta \mathcal{L}_{4-\text{fermion}})_{d=6} &= \frac{f_1({}^1S_0)}{M^2} \mathcal{O}_1({}^1S_0) + \frac{f_1({}^3S_1)}{M^2} \mathcal{O}_1({}^3S_1) \\ &+ \frac{f_8({}^1S_0)}{M^2} \mathcal{O}_8({}^1S_0) + \frac{f_8({}^3S_1)}{M^2} \mathcal{O}_8({}^3S_1), \end{split} \tag{13}$$

$$\mathcal{O}_1(^3S_1) = \psi^{\dagger} \boldsymbol{\sigma} \chi \cdot \chi^{\dagger} \boldsymbol{\sigma} \psi \tag{14}$$

• Matching coefficients to QCD:

$$A(Q\overline{Q} \to Q\overline{Q}) \bigg|_{\text{pert. QCD}} = \sum_{n} \frac{f_n(\Lambda)}{M^{d_n - 4}} \left\langle Q\overline{Q} | \mathcal{O}_n(\Lambda) | Q\overline{Q} \right\rangle \bigg|_{\text{pert. NRQCD}}.$$
 (15)

$$e^+e^- \to J/\psi gg$$

F. Yuan, C.-F. Qiao, and K.-T. Chao, Phys. Rev. D 56, 1663 (1997)

$$\frac{d\sigma(e^+e^- \to J/\psi gg)}{\sigma_{\mu\mu}dzdx_1} = \frac{64e_c^2\alpha_s^2}{27} \frac{\langle \mathcal{O}_1^{\psi}({}^3S_1)\rangle}{m^3} r^2 f(z, x_1; r),$$
(16)

• Vacuum-saturation approximation: G. T. Bodwin Phys. Rev. D 51, 1125 (1995)

$$\langle \psi | \mathcal{O}_1({}^3S_1) | \psi \rangle = \left| \langle 0 | \chi^{\dagger} \boldsymbol{\sigma} \psi | \psi \rangle \right|^2 \left(1 + O(v^4) \right) \tag{17}_{5/6}$$

$$\begin{split} f(z,x_1;r) &= \frac{(2+x_2)x_2}{(2-z)^2(1-x_1-r)^2} + \frac{(2+x_1)x_1}{(2-z)^2(1-x_2-r)^2} + \frac{(z-r)^2-1}{(1-x_2-r)^2(1-x_1-r)^2} \\ &\quad + \frac{1}{(2-z)^2} \left(\frac{6(1+r-z)^2}{(1-x_2-r)^2(1-x_1-r)^2} + \frac{2(1-z)(1-r)}{(1-x_2-r)(1-x_1-r)r} + \frac{1}{r} \right), \end{split}$$

$$z = \frac{2p \cdot k}{s}, \quad x_i = \frac{2p_i \cdot k}{s}, \quad r = \frac{m^2}{s}.$$
(19)

k, p, p_i are the four-momenta of the virtual photon, J/ψ , and the gluons, respectively.

- Integration region: $2\sqrt{r}\leqslant z\leqslant 1+r$, $(2-z-\sqrt{z^2-4r})/2\leqslant x_1\leqslant (2-z+\sqrt{z^2-4r})/2$
- $m_c = 1.5~{\rm GeV}$, $\alpha_s(2m) = 0.26$, $\langle \mathcal{O}_1^\psi(^3S_1) \rangle = \frac{9}{2\pi} |R_{J/\psi}(0)|^2 = 1.45~{\rm GeV}^3$

Y.-Q. Ma, Y.-J. Zhang, and K.-T. Chao, Phys. Rev. Lett. 102, 162002 (2009)

• In ultra-relativistic limit:

$$\sigma_{\mu\mu} = \frac{4\pi\alpha_{EM}}{3s} \tag{20}$$