

STCF 上超子半轻衰变过程 $\Lambda \rightarrow pe^{-}\bar{\nu}_{e}$ 的预研究

报告人:周俊贤

复旦大学

超级陶粲装置研讨会

2025.07.04 湘潭

24210200021@m.fudan.edu.cn

Outline

Calculation of $|V_{us}|$

Summary & discussion

Introduction

Motivation: Extract the solid CKM matrix element $\mid V_{us} \mid$

$\langle V_{us} |$ describes the transition between s and a u quark

- \diamond Results from kaon decays indicate a
 - 2.3σ deviation from CKM matrix unitary

CKM unitarity	-	0.2277±0.0013	
Kaon decays average	H=1	0.2243±0.0008	

Phys. Rev. D 70, 114036

$$\Gamma_{\rm SM} = \frac{\mathscr{B}_{\Lambda \to {\rm pe}^- \bar{\nu}_e}}{\tau_{\Lambda}} = \frac{G_F^2 |V_{us}|^2 f_1(0)^2 \Delta^5}{60\pi^3} [(1 - \frac{3}{2}\delta + \frac{6}{7}\delta^2) + \frac{4}{7}\delta^2 g_w^2 \qquad \qquad \Delta \equiv M_{\Lambda} - M_p \\ \delta \equiv \frac{M_{\Lambda} - M_p}{M_{\Lambda}} \\ + (3 - \frac{9}{2}\delta + \frac{12}{7}\delta^2)g_{av}^2 + \frac{12}{7}\delta^2 g_{av2}^2 + \frac{6}{7}\delta^2 g_w + (-4\delta + 6\delta^2)g_{av}g_{av2}] \end{cases}$$

$$\Leftrightarrow \text{ Extracting } |V_{us}| \text{ requires } \mathscr{B}_{\Lambda \to {\rm pe}^- \bar{\nu}_e} f_1(0), g_{av} \equiv \frac{g_1(0)}{f_1(0)}, g_w \equiv \frac{f_2(0)}{f_1(0)}, \text{ and } g_{av2} \equiv \frac{g_2(0)}{f_1(0)},$$

$$\mathfrak{B}_{\Lambda \to \mathrm{pe}^- \bar{\nu}_{\mathrm{e}}^2} g_{av} \equiv \frac{g_1(0)}{f_1(0)}, g_w \equiv \frac{f_2(0)}{f_1(0)} \text{ from experimental measurement}$$

$$\mathfrak{Assume } g_{av2} \equiv \frac{g_2(0)}{f_1(0)} = 0$$

$$\mathfrak{Get } f_1(0) \text{ through } g_{av} \text{ measurement and LQCD input } g_1(0)$$

2025 07.04

STCF 上超子半轻衰变过程 $\Lambda \rightarrow pe^{-}\bar{\nu}_{e}$ 的预研究 3

2025 07.04

STCF 上超子半轻衰变过程 $\Lambda \rightarrow pe^{-}\bar{\nu}_{e}$ 的预研究 4

From PDG

Introduction

Current research of the Form Factor from hyperon decays

		$\Lambda \to N$	$\Sigma \to N$
	$f_1(0)/f_1^{SU(3)}$		
	This work	0.963 ± 0.061	0.993 ± 0.059
	Quark model [11]	0.987	0.987
	Quark model [12]	0.976	0.975
	χPT [20]	1.027	1.041
	χPT [22]	$1.001\substack{+0.013\\-0.010}$	$1.087^{+0.042}_{-0.031}$
	$1/N_c$ expansion [23]	1.02 ± 0.02	1.04 ± 0.02
	lattice QCD [31]		0.957 ± 0.01
	$g_1(0)/f_1(0)$		
	This work	0.708 ± 0.047	-0.327 ± 0.046
	Cabibbo model [7]	0.731	-0.341
	Quark model [13]	0.724	-0.260
	Soliton model [17]	0.718 ± 0.003	-0.340 ± 0.003
om PDG	Soliton model [18]	0.68	-0.27
	$1/N_c$ expansion [23]	0.73	-0.34
	lattice QCD [29, 30]	-0.287 ± 0.052
	$\operatorname{Exp}\left[4\right]$	0.718 ± 0.015	-0.340 ± 0.017
	$f_2(0)/f_1(0)$		
	This work	0.752 ± 0.074	-1.042 ± 0.090
	Cabibbo model [7]	1.066	-1.292
TI	Quark model [13]	1	-0.962
I ne most precise	Soliton model [17]	0.637 ± 0.041	-0.709 ± 0.036
Measurement	Soliton model [18]	0.71	-0.96
	$1/N_c$ expansion [23]	0.90	-1.02
	lattice QCD [29]		-1.52 ± 0.81
	\sum Exp [4]	1.32 ± 0.81 [65]	-0.97 ± 0.14
	Cited from	JHEP06(20)24)122

g_A / g_V FOR $\Lambda \rightarrow p e^- \overline{\nu}_e$

Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the "Note on Baryon Decay Parameters" in the neutron Listings. The measurements all assi the form factor $g_2 = 0$. See also the footnote on DWORKIN 1990.

VALUE	EVTS		DOCUMENT ID		TECN	COMMENT
-0.718 ± 0.015	OUR AVERAGE					
$-0.719 \pm 0.016 \pm 0.012$	37k	1	DWORKIN	1990	SPEC	$e\nu$ angular corr.
-0.70 ±0.03	7111		BOURQUIN	1983	SPEC	 $\Xi \rightarrow \Lambda \pi^-$
-0.734 ± 0.031	10k	2	WISE	1981	SPEC	$e\nu$ angular correl.
••• We do not use the following	g data for averages, fits	s, lir	mits, etc. • • •			
-0.63 ± 0.06	817		ALTHOFF	1973	OSPK	Polarized Λ

 $g_{av} = g_1(0)/f_1(0)$ included in PDG are obtained 30 years ago

 $g_w = f_2(0)/f_1(0)$ not cited by PDG for its high uncertainty

The more precise measurement of Form Factor at STCF is important.

6

Double tag method

Decay channel: $J/\psi \to \Lambda \overline{\Lambda}, \Lambda \to \mathrm{pe}^- \overline{\nu}_e, \overline{\Lambda} \to \overline{\mathrm{p}}\pi$

not include charge conjuration

Inclusive MC: 1 billion $J/\psi \rightarrow anything$ MC based on fast simulation

$$\begin{split} N_{tag} &= 2N_{\Lambda\overline{\Lambda}} \mathscr{B}_{tag} \varepsilon_{tag} \\ N_{sig} &= 2N_{\Lambda\overline{\Lambda}} \mathscr{B}_{tag} \mathscr{B}_{sig} \varepsilon_{tag,sig} \\ \mathscr{B}_{sig} &= \frac{N_{sig}/\varepsilon_{tag,sig}}{N_{tag}/\varepsilon_{tag}} \\ \end{split}$$
 Get the absolute branching faction

$$\begin{split} N_{\Lambda\bar{\Lambda}} &: \text{ the number of } \Lambda\bar{\Lambda} \text{ Paris} \\ \mathscr{B}_{tag} &: \text{ Branching faction of } \bar{\Lambda} \to \bar{p}\pi^+ \\ \mathscr{B}_{sig} &: \text{ Branching faction of } \Lambda \to pe^- \bar{\nu}_e \\ \hline N_{tag} &: \text{ ST yield } \\ \epsilon_{tag} &: \text{ ST yield } \\ \end{array} \quad \begin{array}{c} N_{sig} &: \text{ DT yield} \\ \hline \epsilon_{tag} &: \text{ ST efficiency } \\ \end{array} \quad \begin{array}{c} \epsilon_{tag,sig} &: \text{ ST efficiency } \end{array}$$

Can be obtained in our analysis

STCF 上超子半轻衰变过程 $\Lambda \rightarrow pe^{-}\bar{\nu}_{\rho}$ 的预研究

Selection criteria at single tag

PhysRevLett.127.121802

- \diamond Good charged tracks
 - ✓ At least 2 oppositely-charged tracks
 - $\checkmark\,$ No vertex requirement due to existence of $\bar{\Lambda}$
 - \checkmark $|\cos\theta| < 0.93$

- \diamond Reconstruction of $\bar{\Lambda}$
 - \checkmark Looping over all combinations with positive and negative charged tracks
 - ✓ Vertex and Second Vertex Fit for $\bar{\Lambda}$ based on $\bar{p}\pi^+$ hypothesis

/ The candidates are selected from combinations with the minimum $\Delta E = E_{beam} - E_{single}$

✓ Vertex/second vertex fit: $\chi^2 < 100$, *L*/ $\sigma > 2$

 $M_{bc} = \sqrt{E_{beam}^2 - |\vec{P}_{ST}|^2}$

Can get N_{tag} and ϵ_{tag} from this fit to M_{bc}

Selection criteria at double tag

- \diamond Good charged tracks
 - ✓ 4 good tracks(another 2 tracks based on single tag)
 - ✓ No vertex requirement due to existence of Λ
 - \checkmark $|\cos\theta| < 0.93$
 - $\checkmark \ \Sigma_i^4 Q_i = 0$
- \diamond Reconstruction of Λ
 - \checkmark Vertex and second vertex Fit for Λ
 - ✓ Decay length >0
 - $\checkmark \chi^2 < 100$
- \diamond Particle identification
 - ✓ Require one track to be electron strictly
 The other track is assumed to be a proton

 $U_{miss} \equiv E_{miss} - c | \overrightarrow{P}_{miss} |$

 E_{miss} : The energy of the missing neutrino P_{miss} : The momentum of the missing neutrino

Can get N_{sig} and $\epsilon_{tag,sig}$ from this fit to U_{miss}

Calculation of branching faction

 $\epsilon_{tag} = 37.85 \%$

 $\epsilon_{tag,sig} = 14.13\%$

 $N_{tag} = 455937 \pm 800$ $N_{sig} = 104.3 \pm 11.8$

$$\mathscr{B}_{sig} = \frac{N_{sig}/\epsilon_{tag,sig}}{N_{tag}/\epsilon_{tag}} = (6.12 \pm 0.61) * 10^{-4}$$

 $\mathscr{B}_{input} = 6.00 * 10^{-4}$

The output branching faction is consistent with our input in 1 billion Inclusive MC, uncertainty is only statistical from N_{sig} to be 9.97%.

Further analysis and prospects

The STCF is prospected to collect 3.4 trillion J/ψ one year, then provide ~10^9 hyperon pairs per year.

We can give a prospect of the statistical uncertainty through sampling method bootstrap.

Measure the Form Factor

Definition of the helicity angles [Phys. Rev. D 108, 016011]

$$\begin{split} \mathrm{d}\Gamma &\propto \mathcal{W}(\boldsymbol{\xi}; \alpha_{\psi}, \Delta\Phi, g_{av}^{\Lambda}, g_{w}^{\Lambda}, \alpha_{\Lambda}) \quad \Omega = (\alpha_{\psi}, \Delta\Phi, g_{av}, g_{w}, \alpha_{\Lambda}) \\ &\sigma_{\Lambda}^{sl}(\boldsymbol{\xi}'') \Big[\mathcal{F}_{0}(\boldsymbol{\xi}') + \alpha_{\psi} \mathcal{F}_{1}(\boldsymbol{\xi}') \\ &+ a_{\Lambda}^{sl}(\boldsymbol{\xi}'') \alpha_{\bar{\Lambda}} \left(\mathcal{F}_{2}(\boldsymbol{\xi}') + \alpha_{\psi} \mathcal{F}_{3}(\boldsymbol{\xi}') + \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta\Phi) \mathcal{F}_{4}(\boldsymbol{\xi}') \right) \\ &+ I_{\Lambda}^{sl}(\boldsymbol{\xi}'') \alpha_{\bar{\Lambda}} \left(\mathcal{F}_{2}'(\boldsymbol{\xi}') + \alpha_{\psi} \mathcal{F}_{3}'(\boldsymbol{\xi}') + \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta\Phi) \mathcal{F}_{4}'(\boldsymbol{\xi}') \right) \\ &+ \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta\Phi) \Big(a_{\Lambda}^{sl}(\boldsymbol{\xi}'') \mathcal{F}_{5}(\boldsymbol{\xi}') + I_{\Lambda}^{sl}(\boldsymbol{\xi}'') \mathcal{F}_{5}'(\boldsymbol{\xi}') + \alpha_{\bar{\Lambda}} \mathcal{F}_{6}(\boldsymbol{\xi}') \Big) \Big] \\ & \boldsymbol{\xi}' = (\theta_{\Lambda}, \theta_{p}, \phi_{p}, \theta_{\bar{p}}, \phi_{\bar{p}}), \boldsymbol{\xi} = (\theta_{\Lambda}, \theta_{p}, \phi_{p}, \theta_{e}, q^{2}, \theta_{\bar{p}}, \phi_{\bar{p}}), \boldsymbol{\xi}'' = (\theta_{e}, q^{2}) . \end{split}$$
We assume the $\alpha_{\Lambda} = \alpha_{\bar{\Lambda}}, g_{2}(0) = 0$

Parameters input

Mode	$lpha_{arphi}$	$\Delta \Phi$	$oldsymbol{lpha}_{\Lambda} / oldsymbol{lpha}_{ar{\Lambda}}$	$g^{\Lambda}_w/g^{ar{\Lambda}}_w$	$g^{\Lambda}_{av}/g^{ar{\Lambda}}_{av}$
$\Lambda \to p e^- \bar{\nu}_e$	0.4748	0.7521	0.4748	1.066	0.719

The $g_{av}^{\Lambda}/g_{av}^{\bar{\Lambda}}$ value input is the most precise measurement from experiments. The $g_w^{\Lambda}/g_w^{\bar{\Lambda}}$ value input is from Cabibbo theory.

Measure the Form Factor

Maximum likelihood fit

$$-\ln \mathscr{L} = -\sum_{i=1}^{N} \ln \frac{\mathscr{W}(\xi_{i}; \Omega)}{\mathscr{N}(\Omega)}$$
$$-\ln \mathcal{L}_{sig} = -\ln \mathcal{L}_{data} + \ln \mathcal{L}_{bkg-p\pi}$$
$$\Omega = (\alpha_{\psi}, \Delta \Phi, g_{av}, g_{w}, \alpha_{\Lambda})$$

$g_{av}^{\Lambda}/g_{av}^{\bar{\Lambda}}$, $g_{w}^{\Lambda}/g_{w}^{\Lambda}$ are floating.

The other 3 parameters are fixed. Normalization factor is got using mDIY MC Contributions from backgrounds can be subtracted The dominated contributions from $p\pi$ is considered Selection criteria is similar to measuring \mathscr{B} besides U_{miss} cut.

I/O check for our method

It should be a standard normal distribution.

Results of our fit

a prospect of the statistical uncertainty through sampling method bootstrap same as measuring BF.

2025 07.04

STCF 上超子半轻衰变过程 $\Lambda \rightarrow pe^{-}\bar{\nu}_{e}$ 的预研究 12^{-}

0.68

0.731

0.724±0.03

0.718±0.003

 0.718 ± 0.015

 $0.719 \pm 0.016 \pm 0.012$

0.85

0.9

0.7189±0.0034

0.8

0.70±0.03

Calculation of $|V_{us}|$ and uncertainty

Calculation of $|V_{us}|$

$$\begin{split} \int_{q_{\min}^2}^{q_{\max}^2} \frac{\Gamma_{e, \,\text{SM}}}{dq^2} dq^2 &= \frac{\mathcal{B}_{B_1 \to B_2 + \ell + \overline{\nu}_l}}{\tau_{B_1}}, \\ \frac{\Gamma_{e, \,\text{SM}}}{dq^2} &= \frac{G_F^2 \, |V_{us}|^2 \, \Delta^5}{60\pi^3} [(1 - \frac{3}{2}\delta + \frac{6}{7}\delta^2) f_1(q^2)^2 + \frac{4}{7}\delta^2 f_2(q^2)^2 \\ &+ (3 - \frac{9}{2}\delta + \frac{12}{7}\delta^2) g_1(q^2)^2 + \frac{6}{7}\delta^2 f_1(q^2) f_2(q^2)], \end{split}$$

$$\begin{split} f_1(q^2) &= f_1(0) \times [1 + q^2(\frac{1}{m_V^2} + \frac{1}{m_V^2 + \alpha_R^{-1}})], \\ f_2(q^2) &= f_2(0) \times [1 + q^2(\frac{1}{m_V^2} + \frac{1}{m_V^2 + \alpha_R^{-1}} + \frac{1}{m_V^2 + 2\alpha_R^{-1}})], \\ g_1(q^2) &= g_1(0) \times [1 + q^2(\frac{1}{m_A^2} + \frac{1}{m_A^2 + \alpha_R^{-1}})], \end{split}$$

Through $g_{av} \equiv \frac{g_1(0)}{f_1(0)}, g_{av} \equiv \frac{f_2(0)}{f_1(0)}, g_1(0) = -0.9263 \pm 0.0023$ (From LQCD) We can get the result of $|V_{us}|$ Uncertainties from our prospects and PDG

Comparison of $|V_{us}|$

2025 07.04

STCF 上超子半轻衰变过程 $\Lambda \rightarrow pe^{-}\bar{\nu}_{e}$ 的预研究 14

STCF 上超子半轻衰变过程 $\Lambda \rightarrow pe^{-}\bar{\nu}_{e}$ 的预研究 15

 $\mathbf{\mathbf{s}}$

1. Give a prospect of the $|V_{us}|$ measurement with its uncertainty at STCF.

2.As prospect, the results will test the CKM matrix unitarity with higher precision in Hyperon decay.

3. The result can be combined with other SL decay to prospect <u>lepton flavor universality</u>.

1.A full **systematic uncertainty** study is not included until the design is completed finally.

2.More precise kinematic fit and uncertainty can be considered in further software framework OSCAR.

3.Currently, the rough prospect of statistical uncertainty depends on sampling method not real data. With the help of OSCAR and new fast simulation, more precise results can be given in the future.

Thank you!

Table 2: The input value and their contribution to final result

Source	input value	relative uncertainty $(\%)$	contribution to $\delta_{V_{us}}$
${\cal B}(\Lambda{ ightarrow} pe^- ar{ u}_e)$	$8.32{*}10^{-4}$	0.17	0.0002_{stat}
g_{av}	0.7189	0.47	0.0004
g_w	1.066	2.12	0.0004_{stat}
G_F	$1.1664*10^{-5} { m GeV}/c^2$	$5.14*10^{-5}$	
m_Λ	$1.1157 \mathrm{GeV}/c^2$	$5.38{*}10^{-4}$	
m_p	$0.9382 { m GeV}/c^2$	$3.09*10^{-8}$	0.0009
$ au_{\Lambda}$	$2.6170*10^{-10} s$	0.38	
$g_{A,NN}$	1.2574	0.10	
$g^R_{A,\Lambda N}$	1.779	0.22	0.0005

R is the factor of the misidentification pi/e

System uncertainty at BESIII

BAM-00767: Study of Lambda -> p e- anti-nu, Shun Wang et al.

Table 12: Relative s	systematic uncertainties	(in %) in the measurement	of the B	F for $\Lambda \rightarrow$	$pe^-\bar{v}_e$
----------------------	--------------------------	-------	----------------------	----------	-----------------------------	-----------------

Sources	Uncertainties
Fitting <i>M</i> _{bc}	0.37
Fitting $U_{\rm miss}$	0.80
$N_{Trk} = 4$	0.03
Λ reconstruction through vertex fit	0.20
Tracking of p	0.26
Electron detection	1.55
Kinematic fit	0.22
Total	1.83

After taking the efficiency correction and systematic uncertainty into account, the BF for $\Lambda \rightarrow pe^-\bar{\nu}_e$ s updated to be:

 $\mathcal{B}(\Lambda \to p e^- \bar{\nu}_e) = [8.16 \pm 0.22(\text{stat}) \pm 0.15(\text{syst})] \times 10^{-4},$

This work is also carried out at BESIII now, So we can cite uncertainties just for rough estimation.

Table 15: Absolute systematic uncertainties in the measurement of the form factor.							
Decay mode		$\Lambda \rightarrow p e^- \bar{\nu}_e$		$\bar{\Lambda} \rightarrow \bar{p}e^+ \nu_e$		$\Lambda \to p e^- \bar{\nu}_e + c.c.$	
Form factor Uncertainty	f^{Λ}_{\perp}	g^{Λ}_+	$f_{\perp}^{ar{\Lambda}}$	$g_+^{ar{\Lambda}}$	$f_{\perp}^{\Lambda}/f_{\perp}^{ar{\Lambda}}$	$g^{\Lambda}_+/g^{ar{\Lambda}}_+$	
Fitting method – I/O check	0.013	0.001	0.006	0.004	0.032	0.001	
Fitting method – Formalism	0.001	0.001	0.001	0.002	0.007	0.001	
Fixed parameters The number of $\Lambda \rightarrow p\pi^-$ background events The number of other background events MC correction factors	0.272	0.004	0.337	0.012	0.217	0.006	
Cut on p_e	0.132	0.008	0.160	0.006	0.123	0.004	
Cut on decay length of Λ Cut on χ^2 of kinematic fit	Negligible						
Sum	0.303	0.009	0.373	0.014	0.252	0.007	

Recent results at BESIII

BAM-00767: Study of Lambda -> p e- anti-nu, Shun Wang et al.

