# Theoretical study of light vector mesons around 2.0 GeV



#### zhouqs@imu.edu.cn



2025 年超级陶粲装置研讨会, 湘潭 2025 年 7 月 2-6 日



### ● 研究背景

### • 在<mark>谱学支撑下</mark>对 $\rho$ 介子产生过程的分析

#### ● 总结



## 研究背景

### 为什么要研究轻介子态



Photo from the Nobel Foundation archive.

Hideki Yukawa The Nobel Prize in Physics 1949

Born: 23 January 1907, Tokyo, Japan

Died: 8 September 1981, Kyoto, Japan

Affiliation at the time of the award: Columbia University, New York, NY, USA; Kyoto University, Kyoto, Japan

Prize motivation: "for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces"

Prize share: 1/1



Photo from the Nobel Foundation archive.

Cecil Frank Powell The Nobel Prize in Physics 1950

Born: 5 December 1903, Tonbridge, United Kingdom

Died: 9 August 1969, Italy

Affiliation at the time of the award: Bristol University, Bristol, United Kingdom

Prize motivation: "for his development of the photographic method of studying nuclear processes and his discoveries regarding mesons made with this method"

Prize share: 1/1

#### Rev.Mod.Phys.71:1411-1462,1999

"Meson physics and the strong interactions have been intimately connected since pions were first introduced by Yukawa to explain the inter-nucleon force ."

——S. Godfrey and J. Napolitano: Light-meson spectroscopy

### 为什么要研究轻介子

#### 一些奇特强子态与传统介子的量子数是相同的,对轻 味介子的研究是<mark>寻找和鉴别</mark>一些<mark>奇特强子态</mark>的基础

| BaBar Collaboration • Bernard Aubert (Barcelona U., ECM) et al. (Oct, 2006)Published in: Phys.Rev.D 74 (2006) 091103 • e-Print: hep-ex/0610018 [hep-ex] $\square$ pdf $\oslash$ links $\oslash$ DOI $\boxdot$ cite $\boxdot$ claim $\fbox$ reference search $\bigcirc$ 216 citationsDetermination of Spin-Parity Quantum Numbers of X (2370) as 0 <sup>-+</sup> from J / $\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$ #1BESIII Collaboration • Medina Ablikim (Beijing, Inst. High Energy Phys.) et al. (Dec 8, 2023)Published in: Phys.Rev.Lett. 132 (2024) 18, 181901 • e-Print: 2312.05324 [hep-ex] $\square$ pdf $\oslash$ DOI $\square$ cite $\boxdot$ claim $\boxdot$ reference search $\bigcirc$ 40 citations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A Structure at 2175-MeV in $e^+e^- 	o \phi$ f0(980) Observed via Initial-State Radiation $^{\#_2}$                      |                                                                                                                                      |                                                                                                              |                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Published in: <i>Phys.Rev.D</i> 74 (2006) 091103 • e-Print: hep-ex/0610018 [hep-ex]<br>$ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BaBar Collaboration • Bernard Auber                                                                                     | t (Barcelona U., ECM) et al. (Oct, 2006)                                                                                             |                                                                                                              |                                                                                                |  |  |
| $\square$ pdf $\varnothing$ links $\varnothing$ DOI $\square$ cite $\square$ claim $\square$ reference search $\bigcirc$ 216 citationsDetermination of Spin-Parity Quantum Numbers of X(2370) as 0 <sup>-+</sup> from J / $\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$ #1BESIII Collaboration • Medina Ablikim (Beijing, Inst. High Energy Phys.) et al. (Dec 8, 2023)Published in: Phys.Rev.Lett. 132 (2024) 18, 181901 • e-Print: 2312.05324 [hep-ex] $\square$ pdf $\varnothing$ DOI $\square$ cite $\square$ claim $\square$ reference search $\bigcirc$ 40 citations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Published in: Phys.Rev.D 74 (2006) 09                                                                                   | 1103 • e-Print: hep-ex/0610018 [hep-e                                                                                                | ex]                                                                                                          |                                                                                                |  |  |
| Determination of Spin-Parity Quantum Numbers of $X(2370)$ as $0^{-+}$ from $J / \psi \to \gamma K_S^0 K_S^0 \eta'$ #1BESIII Collaboration • Medina Ablikim (Beijing, Inst. High Energy Phys.) et al. (Dec 8, 2023)Published in: Phys.Rev.Lett. 132 (2024) 18, 181901 • e-Print: 2312.05324 [hep-ex]Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" for the second colspan="2" for the seco | 🗋 pdf 🤣 links 🔗 DOI                                                                                                     | 🔁 cite 📑 claim                                                                                                                       | c reference search                                                                                           | $\bigcirc$ 216 citations                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Determination of Spin-Parity<br>BESIII Collaboration • Medina Ablikim<br>Published in: <i>Phys.Rev.Lett.</i> 132 (2024) | Quantum Numbers of <i>X</i> (2370)<br>(Beijing, Inst. High Energy Phys.) et al. (<br>18, 181901 • e-Print: 2312.05324 [hep-<br>claim | ) <b>as</b> 0 <sup>-+</sup> <b>from</b> $J / \psi$ –<br>(Dec 8, 2023)<br>ex]<br>$\boxed{R}$ reference search | $\Rightarrow \gamma K_S^0 K_S^0 \eta' \qquad \text{#1}$ $\textcircled{3} 40 \text{ citations}$ |  |  |

LHCD

CERN-EP-2021-025 LHCb-PAPER-2020-044 March 2, 2021

Observation of new resonances decaying to  $J/\psi K^+$  and  $J/\psi \phi$ 

LHCb collaboration<sup>†</sup>

#### Abstract

The first observation of exotic states with a new quark content chii denying to the  $J_0K^{++}$  final states is reported with hish significance from an amplitude analogis of the  $B^+ \to J/\psi_0K^+$  decay. The analysis is carried out using proton-proton collison data corresponding to a total integrated limitopiut of 90<sup>-1</sup> collected pt be LHCb experiment at entre-of-mass energies of 7, 8 and 13 TeV. The most significant states  $\chi_{\perp}(000)^+$ , has a mass of 4003  $\pm^-$  21/MeV, a with of 131  $\pm$  15  $\pm$  205 MeV, and spin-party  $J^{F-} = 1^+$ , where the quoted uncertainties are statistical and systematic. respectively. A new 1<sup>+</sup> X (4085) state decaying to the 1/ $\psi_0^+$  final state is also states are confirmed and two more exotic states,  $Z_{\perp}(4220)^+$  and X(4500), are observed with significance exoceding live standard deviation.





Submitted to Phys. Rev. Lett. © 2021 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence

### 为什么要研究轻介子





### Electromagnetic Form Factors of $\Lambda$ Hyperon in the Vector Meson Dominance Model and a Possible Explanation <sup>#1</sup> of the Near-Threshold Enhancement of the Reaction

Zhong-Yi Li (Lanzhou, Inst. Modern Phys. and Beijing, GUCAS), An-Xin Dai (Lanzhou, Inst. Modern Phys. and Beijing, GUCAS), Ju-Jun Xie (Lanzhou, Inst. Modern Phys. and Beijing, GUCAS and Zhengzhou U. and Lanzhou U.) (Jul 22, 2021)

Published in: Chin.Phys.Lett. 39 (2022) 1, 011201, Chin.Phys.Lett. 39 (2022) 011201 • e-Print: 2107.10499 [hep-ph]

### 高能物理实验发现了丰富的轻介子态



#### PDG 2022

| $\overline{n^{2s+1}\ell_J}$ | $J^{PC}$ | I = 1                                   | $1 = \frac{1}{2}$        | I = 0               | I = 0            |
|-----------------------------|----------|-----------------------------------------|--------------------------|---------------------|------------------|
|                             |          | $uar{d},ar{u}d,$                        | $u\bar{s},  d\bar{s};$   | f'                  | f                |
|                             |          | $\frac{1}{\sqrt{2}}(d\bar{d}-u\bar{u})$ | $ar{d}s,ar{u}s$          |                     |                  |
| $1^{1}S_{0}$                | $0^{-+}$ | $\pi$                                   | K                        | $\eta$              | $\eta'(958)$     |
| $1^{3}S_{1}$                | $1^{}$   | ho(770)                                 | $K^*(892)$               | $\phi(1020)$        | $\omega(782)$    |
| $1^{1}P_{1}$                | $1^{+-}$ | $b_1(1235)$                             | $K_{1B}{}^{\mathrm{a}}$  | $h_1(1415)$         | $h_1(1170)$      |
| $1^{3}P_{0}$                | $0^{++}$ | $a_0(1450)$                             | $K_0^*(1430)$            | $f_0(1710)$         | $f_0(1370)$      |
| $1^{3}P_{1}$                | $1^{++}$ | $a_1(1260)$                             | $K_{1A}{}^{\mathrm{a}}$  | $f_1(1420)$         | $f_1(1285)$      |
| $1^{3}P_{2}$                | $2^{++}$ | $a_2(1320)$                             | $K_{2}^{*}(1430)$        | $f_{2}'(1525)$      | $f_2(1270)$      |
| $1^{1}D_{2}$                | $2^{-+}$ | $\pi_2(1670)$                           | $\bar{K_2}(1770)^{ m a}$ | $\eta_{2}(1870)$    | $\eta_2(1645)$   |
| $1^{3}D_{1}$                | $1^{}$   | ho(1700)                                | $K^*(1680)^{\mathrm{b}}$ | $\phi(2170)^{d}$    | $\omega(1650)$   |
| $1^{3}D_{2}$                | $2^{}$   |                                         | $K_2(1820)^{\mathrm{a}}$ |                     |                  |
| $1^{3}D_{3}$                | $3^{}$   | $ ho_3(1690)$                           | $K_{3}^{*}(1780)$        | $\phi_3(1850)$      | $\omega_3(1670)$ |
| $1^{3}F_{4}$                | $4^{++}$ | $a_4(1970)$                             | $K_{4}^{*}(2045)$        | $f_4(2300)$         | $f_4(2050)$      |
| $1^{3}G_{5}$                | $5^{}$   | $ \rho_5(2350) $                        | $K_{5}^{*}(2380)$        |                     |                  |
| $2^{1}S_{0}$                | $0^{-+}$ | $\pi(1300)$                             | K(1460)                  | $\eta(1475)^{ m c}$ | $\eta(1295)$     |
| $2^{3}S_{1}$                | $1^{}$   | ho(1450)                                | $K^*(1410)^{\mathrm{b}}$ | $\phi(1680)$        | $\omega(1420)$   |
| $2^{3}P_{1}$                | $1^{++}$ | $a_1(1640)$                             |                          |                     |                  |
| $2^{3}P_{2}$                | $2^{++}$ | $a_2(1700)$                             | $K_{2}^{*}(1980)$        | $f_2(1950)$         | $f_2(1640)$      |

研究矢量介子态的天然平台!

2 GeV附近的轻介子态 还没有被建立起来

### $e^+e^-$ 湮灭实验在2GeV能区附近积累了丰富的数据



### 2 GeV附近矢量轻介子的态共振态参数测量结果



### 矢量轻介子质量谱 (MGI)



随着能级的增加质量间隔逐渐变小,干涉效应凸显出来, 这给实验测量和理论计算的精度都提出了更高的要求。

### ρ(1450) 和 ρ(1700) 的建立

#### PDG 1976

#### Nuclear Physics B58 (1973) 31-44



Fig. 7.  $\gamma p \rightarrow \pi^+ \pi^- \pi^+ \pi^- p$ . Four-pion invariant mass distributions with  $\Delta^{++}$  excluded.

| Photon energy (GeV) | 6-12          | 12-18         |
|---------------------|---------------|---------------|
| Mass (MeV)          | $1622 \pm 20$ | $1624 \pm 50$ |
| Width (MeV)         | 265 ± 90      | $433 \pm 100$ |

#### Data Card Listings For notation, see key at front of Listings. $\begin{bmatrix} \rho'(1600) \\ \rightarrow 4\pi \end{bmatrix}^{65 \text{ RHC PRIME(1000, JPG=1-+) I+1}}$ The p' was first seen in $\gamma$ (real or virtual) $\Rightarrow \rho'^{0} \Rightarrow \rho^{0}\pi^{+}\pi^{-}$ with the $\pi^{+}\pi^{-}$ pair apparently in an S wave (BINGHAM 72, DAVIER 73, SCHACHT 74, ALEXANDER 75).

#### PDG 1988



**干涉效应**给实验准确抽取共振参数带来很大的影响, 谨慎对待实验的共振态参数测量结果,关注数据点!

### 质量谱和衰变性质支撑下对截面数据的研究

在质量谱和衰变性质的支撑下,中间态贡献大小被确定



从质量谱、衰变性质和产生过程全方位地认识, 避免盲人摸象带来的理解偏差!



### 谱学支撑下对p介子产生过程的分析

### $e^+e^- \rightarrow \omega \pi^0 \pi a_2(1320) \pi$ 的截面测量结果

BESIII: Physics Letters B 813 (2021) 136059



Another structure is observed in the  $\omega \pi^0$  cross section with a significance of more than  $10\sigma$  and with a mass of  $m = (2034 \pm 13 \pm 9) \text{ MeV}/c^2$ , width of  $\Gamma = (234 \pm 30 \pm 25) \text{ MeV}$  and  $\Gamma^{ee} \cdot B^{\omega \pi^0}$  of  $(34 \pm 11 \pm 16)$  eV. This structure could either be the  $\rho(2000)$  or the  $\rho(2150)$  state. However, the mass and width of the observed resonance is closer to the  $\rho(2000)$  resonance, which is suggested to be the  $2^3D_1$  state [41].



 $(137.1 \pm 73.3 \pm 2.1)$  eV, respectively. The observed structure agrees with the properties of the  $\rho(2000)$  resonance observed in  $e^+e^- \rightarrow \omega \pi^0$  [49], which indicates the first observation of the decay  $\rho(2000) \rightarrow a_2(1320)\pi$ . To further

 $\Gamma = 163 \pm 69 \pm 24$  MeV,

 $\Gamma_{ee} B(a_2 \pi) = 34.6 \pm 17.1 \pm 6.0$ 

 $(137.1 \pm 73.3 \pm 2.1) \text{ eV}$ 

#### BESIII: Phys. Rev. D 108, L111101 (2023)

### Y(2040)作为 $\rho(2^{3}D_{1})$ 态的困难



u ℝ Y(2034) ≡ Y(2044) ≡ ρ(2D) ⇒ Br(ρ(2D) → ωπ<sup>0</sup>/a<sub>2</sub>(1320)π) > 100%!

### 两个问题:

### 为什么联合分支比存在量级上的差异? 为什么没有观测到ρ(2150)的信号?



TABLE IV. Decay widths of Y(2040) as the  $\rho(2^3D_1)$  (in MeV), the initial mass is set to be 2034 MeV and the masses of all the final states are taken from PDG [2].

| Channel                        | Mode                                                            | $\rho(2^{3}D_{1})$           | Mode                                                       | $\rho(2^{3}D_{1})$             |  |
|--------------------------------|-----------------------------------------------------------------|------------------------------|------------------------------------------------------------|--------------------------------|--|
| $1^{-} \rightarrow 0^{-}0^{-}$ | $\pi\pi$<br>$\pi\pi(1300)$<br>$\pi\pi(1800)$                    | 19.77<br>14.81<br>1.28       | <i>KK</i><br><i>KK</i> (1460)                              | 0.32<br>0.30                   |  |
| $1^- \rightarrow 0^- 1^-$      | $ \frac{\pi\omega}{\rho\eta} \\ \omega(1420)\pi \\ KK^*(1410) $ | 6.31<br>2.17<br>6.68<br>0.57 | $\rho \eta' \\ KK^* \\ \omega(1650) \pi \\  ho(1450) \eta$ | 0.013<br>0.015<br>0.14<br>0.51 |  |
| $1^- \rightarrow 1^- 1^-$      | ρρ                                                              | 36.38                        | $K^*K^*$                                                   | 0.13                           |  |
| $1^-  ightarrow 0^- 1^+$       | $a_1(1260)\pi$<br>$KK_1(1400)$<br>$KK_1(1270)$                  | 26.60<br>0.098<br>0.19       | $h_1(1170)\pi$<br>$b_1(1235)\eta$                          | 35.20<br>6.23                  |  |
| $1^- \rightarrow 0^- 2^+$      | $a_2(1320)\pi$                                                  | 9.76                         | $KK_{2}^{*}(1430)$                                         | 0.027                          |  |
| $1^- \rightarrow 0^- 2^-$      | $\pi\pi_2(1670)$                                                | 39.15                        |                                                            |                                |  |
| $1^- \rightarrow 0^- 3^-$      | $\pi\omega_3(1670)$                                             | 0.19                         |                                                            |                                |  |
| $1^- \rightarrow 1^- 1^+$      | $b_1(1235)\rho$                                                 | 15.86                        | $a_1(1260)\omega$                                          | 5.20                           |  |
| Total width                    | 227.91                                                          |                              |                                                            |                                |  |
| Experiment                     | $234 \pm 30 \pm 25$ [1]                                         |                              |                                                            |                                |  |

- (1) The screening effects play an important role in studying the masses of Y(2040),  $\rho(1900)$ ,  $\rho(2150)$ , and  $\rho(3^{3}D_{1})$ , and mass gaps around 100 MeV appear when we compare the MGI model predictions with the ones of the GI model.
- (2) The newly observed state Y(2040) should be the same state as  $\rho(2000)$  which is omitted in the summary table of PDG [2], since they share the similar resonance parameters [1,16,30].
- (3) The Y(2040),  $\rho(1900)$ , and  $\rho(2150)$  can be interpreted as the  $\rho(2^{3}D_{1})$ ,  $\rho(3^{3}S_{1})$ , and  $\rho(4^{3}S_{1})$  states, respectively.

### 在Fano干涉的框架下理解Y(2044)



需要存在一个质量在2044 MeV左右,且在该过程有较大贡献的 $\rho$ -like态。

### $S-D混合框架下\rho$ 介子态的质量谱和衰变性质

$$\begin{pmatrix} |\rho'_{nS-(n-1)D}\rangle \\ |\rho''_{nS-(n-1)D}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |\rho(nS)\rangle \\ |\rho((n-1)D)\rangle \end{pmatrix}$$



□ *Y*(2044)有可能是来自*ρ*<sup>''</sup><sub>3S-2D</sub>的贡献;

**□**  $\rho_{nS-(n-1)D}^{\prime\prime}$ 的 $\Gamma_{e^+e^-}$ 相较于纯的 $\rho((n-1)D)$ 可能会显著增大。

### $S-D混合框架下\rho介子态的质量谱和衰变性质$



□  $e^+e^- \rightarrow a_2(1320)\pi$ :  $\rho_{3S-2D}''$ 在该过程有较大贡献  $\Rightarrow \theta_{3S-2D} > 0$ ;

 $\Box \ e^+e^- \to \omega \pi^0 \colon Y(2034) \equiv \rho_{3S-2D}'' \Rightarrow \theta_{3S-2D} = +23.4^\circ;$  $\Box \ e^+e^- \to f_1(1285)\pi^+\pi^- \colon \rho(2150) \equiv \rho_{4S-3D}' \Rightarrow \theta_{4S-3D} = \pm 25.1^\circ.$ 

### $S-D混合框架下\rho$ 介子态的质量谱和衰变性质

TABLE III: Masses and decay properties of  $\rho'_{3S-2D}$ ,  $\rho''_{3S-2D}$ ,  $\rho'_{4S-3D}$ , and  $\rho''_{4S-3D}$ . Here, mixing angles for 3S-2D wave and 4S-3D wave admixtures are taken as  $\pm 23.4^{\circ}$  and  $\pm 25.1^{\circ}$ , respectively.

|                                                           | Positive angle |                              |                | Negative angle               |                |                              |                |                              |
|-----------------------------------------------------------|----------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------|------------------------------|
| Parameters                                                | $ ho_{3S-2D}'$ | $ ho_{3S-2D}^{\prime\prime}$ | $ ho_{4S-3D}'$ | $ ho_{4S-3D}^{\prime\prime}$ | $ ho_{3S-2D}'$ | $ ho_{3S-2D}^{\prime\prime}$ | $ ho_{4S-3D}'$ | $ ho_{4S-3D}^{\prime\prime}$ |
| Mass (MeV)                                                | 1828           | 2034                         | 2150           | 2311                         | 1828           | 2034                         | 2150           | 2311                         |
| $\Gamma_{\rm tot}~({\rm MeV})$                            | 109            | 243                          | 103            | 182                          | 97             | 207                          | 77             | 192                          |
| $\Gamma_{e^+e^-}$ (eV)                                    | 93.35          | 85.94                        | 31.03          | 51.81                        | 169.59         | 1.14                         | 79.21          | 0.02                         |
| $\Gamma_{e^+e^-}\mathcal{B}_{a_2(1320)\pi} \text{ (eV)}$  | 5.51           | 7.25                         | 1.11           | 4.75                         | 27.15          | $3.67 \times 10^{-4}$        | 9.76           | $5.52 \times 10^{-7}$        |
| $\Gamma_{e^+e^-}\mathcal{B}_{\omega\pi^0}$ (eV)           | 6.87           | 7.17                         | 0.72           | 2.20                         | 30.01          | $5.96 \times 10^{-7}$        | 5.49           | $2.90\times10^{-6}$          |
| $\Gamma_{e^+e^-}\mathcal{B}_{f_1(1285)\rho} \text{ (eV)}$ | ••••           |                              | 0.63           | 0.11                         |                |                              | 0.92           | $3.28 \times 10^{-4}$        |
| $\Gamma_{e^+e^-}\mathcal{B}_{\pi\pi}$ (eV)                | 12.70          | 2.61                         | 2.74           | 1.00                         | 1.38           | 0.14                         | 0.46           | $2.01 \times 10^{-3}$        |
| $\Gamma_{e^+e^-}\mathcal{B}_{\rho\eta} (\mathrm{eV})$     | 1.29           | 2.39                         | 0.12           | 0.58                         | 5.63           | $1.01 \times 10^{-6}$        | 0.89           | $7.35 \times 10^{-7}$        |
| $\Gamma_{e^+e^-}\mathcal{B}_{\rho\eta'}$ (eV)             | 0.02           | 0.13                         | 0.02           | 0.02                         | 0.12           | $1.76\times10^{-6}$          | 0.03           | $2.62 \times 10^{-7}$        |

| Parameters                    | $\Gamma_{e^+e^-} \mathcal{B}_{f_1(1285)\pi^+\pi^-}$ (eV) | $\Gamma_{e^+e^-}\mathcal{B}_{\eta'\pi^+\pi^-} \text{ (eV)}$ |
|-------------------------------|----------------------------------------------------------|-------------------------------------------------------------|
| $\rho'_{3S-2D}$               | 0.20 (0.21)                                              | 0.03 (0.19)                                                 |
| $\rho_{3S-2D}^{''}$           | 0.02 (0.04)                                              | $0.18 \ (2.52 \times 10^{-6})$                              |
| $\rho_{4S-3D}^{\prime}$       | 0.93 (1.38)                                              | 0.03 (0.04)                                                 |
| $\rho_{4S-3D}^{\prime\prime}$ | 0.20 (0.0006)                                            | $0.03 \ (4.3 \times 10^{-7})$                               |

在 $e^+e^- \rightarrow f_1(1285)\pi^+\pi^-$ 过程中,  $\rho'_{3S-2D}$ 和 $\rho''_{3S-2D}$ 是压低的。

 $\theta_{4S-3D} = -25.1^{\circ}$ 的拟合结果



 $\theta_{4S-3D} = -25.1$ °不能描述好截面数据

 $\theta_{4S-3D} = +25.1^{\circ}$ 的拟合结果



□  $\theta_{4S-3D}$  = +25.1°可以较好地描述截面数据;

*Y*(2034)是ρ<sup>''</sup><sub>3S-2D</sub>的一个很好的候选态, *Y*(2044)主要来自 ρ<sup>''</sup><sub>3S-2D</sub>,在误差范围内可认为*Y*(2044)与*Y*(2034)是同一个态。

总结

- ▶2 GeV能区矢量轻介子的质量谱间隔变小,在产生过程中,不同中间态之间的干涉效应会变得尤为明显,从而导致实验在不同过程中观测到的共振态参数出现很大的差异,截面数据可能会给我们提供更丰富的信息;
- ▷S-D混合效应在理解2 GeV能区矢量轻介子态的性质时可能是需要考虑的;
- ▶我们也给出了研究2 GeV附近各个ρ介子态的特征道,希望未来在 STCF被关注。

## 谢谢大家!