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Weak decays of hyperons—complicated

4
A coherent understanding of all three is compulsory, but remains challenging

Rare semi-leptonic decays 
of hyperons:

Ø �� → ���∗ → ��� �  and �� → ����
Ø �� → ���� 

Weak radiative hyperon
 decays (WRHDs):

 �� → �� �

Non-
leptonic
 hyperon 
decays:

 �� → �� �

l S/P puzzle
l CP violation

l WRHDs puzzle

l NP
l  ���

Inputs
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Effective field theories: Bottom-up approach to new physics 

6

ØLow-energy effective 
Hamiltonian approach at scale 
�(��)

ØChiral perturbation theory (���) 
is a powerful tool to deal with the 
QCD non-perturbative effectst

� → ���  transitions:

Perturbation calculation χPTNP



Chiral perturbation theory

7

pLagrangian

�：软能标，�：硬能标, �� ：低能常数 ， �� ：包含场的算符.

pPower counting rule
Chiral order:

pPower-counting-breaking problem

Baryon /Meson  system：



HB vs. Infrared vs. EOMS

Heavy baryon (HB) ChPT
- non-relativistic
- breaks analyticity of loop 

amplitudes
- converges slowly (particularly 

in three-flavor sector)
- strict PC and simple 

nonanalytical results

Extended-on-mass-shell (EOMS) BChPT
-satisfies all symmetry and analyticity constraints
-converges relatively faster--an appealing feature

Infrared BChPT

-relativistic

-breaks analyticity of loop amplitudes 

-converges slowly (particularly in 

three-flavor sector)

-analytical terms the same as 

HBChPT

8

LSG, 
Front.Phys.(Beijing) 8 (2013) 328



9

Successful applications of EOMS LSG, 
Front.Phys.(Beijing) 8 (2013) 328

LSG et al., PRL101 (2008) 222002

LSG* et al, PRL130 (2023)071902

Baryon magnetic moments

Meson-baryon scattering Nucleon-nucleon scattering
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What are weak radiative hyperon decays 

11

pWeak radiative hyperon decays (WRHDs) are interesting physical processes 

involving the electromagnetic, weak, and strong interactions

p � → � � transitions at the quark level

p Six WRHDs channels of the ground-state octet baryons



What are weak radiative hyperon decays 

12

p The effective Lagrangian describing the �� → �� � WRHDs

        a: partity-conserving amplitude        b: partity-violating amplitude 

pObservables for the WRHDs

  ��:  the asymmetry parameter  
  �:  the angle between the spin of the initial baryon �� and the 3-momentum  � of 
       the final baryon ��
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p Based on gauge invariance, CP conservation, and U-spin symmetry

p Hara’s theorem dictates that the WRHDs � → �′� and �′ → �� must 
be identical under the U-spin transformation �  ↔ �

leading to 

Why study WRHDs: the WRHDs puzzle
Hara’s theorem Y. Hara, PRL12, 378 (1964) 

 � =− �,    i. e.    � = 0 



Why study WRHDs: the WRHDs puzzle
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Why study WRHDs: the WRHDs puzzle
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p The  �+ → �  asymmetry parameter remains large and negative: 

−0.652±0.056stat±0.020syst. 

p Although some models predictions are in agreement with the measurement of the 
large asymmetry for the �+ → � � decay, they explain poorly the data of other 
WRHDs



Why study WRHDs： experimentally challenging 

16

p Significant changes in the asymmetry parameters of Ξ0 → Σ0 � and Ξ0 → Λ �

Fermilab (1990) NA48 (2004) NA48/1 (2010)

Fermilab (1989) KTeV (2000) NA48/1 (2010)



Why study WRHDs--� → ��

17

pNew BESIII measurement for the � → � � decay (PRL129(2022)21,212002)

Ø The branching fraction is only about one half of the current PDG average
Ø The asymmetry parameter �� is determined for the first time

PDG2022



Why study WRHDs--� → ��

18

pNone of the existing predictions can describe the new BESIII 

measurement for the � → � � decay 

Data：BESIII，PRL129(2022)21,212002

HB χPT : E. E. Jenkins et al, NPB 397, 84 (1993)

BχPT: H. Neufeld, Nucl. Phys. B 402, 166 (1993)

NRCQM：Qiang Zhao et al, CPC45, 013101 (2021)

PM1:  M. B. Gavela et al, PLB 101, 417 (1981)

PM2:  G. Nardulli, PLB 190, 187 (1987)

VDM: P. Zenczykowski, PRD 44, 1485 (1991)

χPT: B. Borasoy et al, PRD 59, 054019 (1999)

BSU(3): P. Zenczykowski, PRD 73, 076005 (2006)

QM: E. N. Dubovik et al, Phys. Atom. Nucl. 71, 136 (2008)



Why study WRHDs

19

p New BESIII and CLAS data for the hyperon non-leptonic decays

Ø Decay parameter for the � → � �− decay

Ø Featured by a larger statistics and a small 
uncertainty and very different from previous 
PDG average

Ø A significant change for the baryon decay 
parameter of  � → � �− may greatly affect the 
values of LECs hD, hF, and  hyperon non-leptonic 
decay amplitudes as inputs for WRHDs 

BESIII: Nature Phys. 15, 631 (2019)        CLAS: PRL123,182301 (2019)
BESIII: Nature 606, 64 (2022)                  BESIII: PRL129,131801 (2022) 



Why study WRHDs—theoretical tools

20

p Theoretically, two phenomenological models can explain the current experimental data of 

WRHDs at least qualitatively except for the  � → � � decay 

Ø E. N. Dubovik et al, Phys. Atom. Nucl. 71, 136 (2008)
Ø P. Zenczykowski, PRD 73, 076005 (2006)

p Chiral perturbation theory (χPT) studies on the WRHDs

Ø B. Borasoy et al, PRD 59, 054019 (1999)  (Tree level)

Ø E. E. Jenkins et al, NPB397, 84 (1993)
Ø J. W. Bos et al, PRD 51, 6308 (1995)                  
Ø J. W. Bos et al, PRD 54, 3321 (1996)
Ø J. W. Bos, et al, PRD 57, 4101 (1998)

Ø H. Neufeld, NPB 402, 166 (1993)   (Loop level in the covariant formulation)          

(Loop level in the heavy 
baryon  formulation)                                                  



Our purpose
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Our goal is to study the WRHDs  in covariant baryon chiral perturbation theory 
(BχPT) with the extended-on-mass-shell (EOMS) renormalization scheme 

l The work in the BχPT H. Neufeld, NPB 402, 166 (1993) 

ü The used  low energy constants (LECs) and hyperon non-leptonic 
decay amplitudes are out of date

ü No efforts were taken to ensure consistent power counting

Update the relevant LECs 
and hyperon non-leptonic 
decay amplitudes

Calculate the branching 
fractions and asymmetry 
parameters, i.e., amplitudes 
a and b, of the WRHDs order 
by order

Compare our predictions 
with those from other 
approaches/experimental 
data



 WRHDs in the EOMS BχPT
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Feynman diagrams Lagrangians

LECs  D  and  F  have  been 
determined in Ref. L. S. Geng 
et al, PRD 90, 054502 (2014)

Order contributions

Fo r  t h e  a m p l i t u d e  a , 
weak vertex is ��

LECs ��
� and ��

� : 
the experimental data of Octet 
baryon magnetic moment

Ø Leading-order LECs hD & hF are determinated by fitting to the 
latest experimental data on the �� → �� � decays

Ø NLO LECs: five C’s



  �� of �� → �� � and �� → � � as a function of |�|� + |�|� 
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Ø O(p2) counter-term contributions are determined by fitting to  �0 → �0 � and  �0 → � �  for the 
first time 

Ø The EOMS χPT results manifest as correlations between branching ratios and asymmetry 
parameters because of the long-standing S/P puzzle  in hyperon non-leptonic decays



  �� of the � → � � decay as a function of |�|� + |�|� 
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Data：BESIII，PRL129(2022)21,212002

HB χPT : E. E. Jenkins et al, NPB 397, 84 (1993)

NRCQM：Qiang Zhao et al, CPC45, 013101 (2021)

PM1:  M. B. Gavela et al, PLB 101, 417 (1981)

PM2:  G. Nardulli, PLB 190, 187 (1987)

VDM: P. Zenczykowski, PRD 44, 1485 (1991)

χPT: B. Borasoy et al, PRD 59, 054019 (1999)

BSU(3): P. Zenczykowski, PRD 73, 076005 (2006)

QM: E. N. Dubovik et al, Phys. Atom. Nucl. 71, 136 (2008)

Ø Interestingly, only EOMS BχPT agrees with the latest BESIII measurement
Ø The prediction in the HB χPT with  counter-term contributions is very close to the BESIII data
Ø The vector dominance model (VDM)  and the pole model (PM II) are disfavored by the BESIII data



  �� of the other WRHDs as a function of |�|� + |�|� 
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Ø For the Σ0 → � � decay, not yet measured, our result contradicts the predictions of PM I  
and NRCQM

Ø For the Ξ− → Σ−� decay, our prediction agrees better with the experimental 
measurement, and the current PDG data disfavor the results of PM II and tree-level χPT

Ø For the �+ → � � decay, the results predicted in all the χPT deviate from the PDG 
average but our prediction is closer

Hara’s theorem: �� for Ξ− → Σ−� and �+ → � �  should not be too large. 



What is still missing?

p For the �+ → � � decay, the results predicted in all the χPT deviate from the PDG 
average but our prediction is closer

p Could this be somehow rescued? 
Ø How about contributions of heavier resonances? Have been tried previously,  but the 

results are a disaster, e.g., B. Borasoy et al, PRD 59, 054019(1999)

Uncertainties of the 
relevant LECs are 
important but 
remain unstudied.



Contributions of heavier resonances

Ø Solid and dashed lines in red represent the EOMS results with/without heavier 
resonances, respectively.

Ø In the figure on the right, we show that after considering the uncertainties of input 
quantities (LECs), the experimental data can also be well described.



Contributions of heavier resonances

28

Ø Contributions of  1
2

−
states  can improve the present EOMS results (solid lines in red)

Ø Uncertainties of resonance contributions are not fully taken into account



Contents

☞ Background & purpose

☞ Theoretical framework

☞ Weak radiative decays of hyperons

☞ Rare semi-leptonic decays of hyperons 

☞ Summary and outlook

29



Why to study the rare semileptonic � → � transitions 

30

p� → � transitions are highly suppressed in the SM

p As such, they are ideal for tests of the SM and searches for BSM

l G. Buchalla and A. J. Buras,NPB 548 (1999) 309-327
l V. Cirigliano et al., Rev.Mod.Phys. 84 (2012) 399
l Hai-Bo Li, Front.Phys.(Beijing) 12 (2017) 5, 121301
l A. A. Alves Junior et al, JHEP 05 (2019) 048 



� → ��� transitions： �+ → �+�� and �� → ���� 
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�(1) �(10)

SM Data 

@JHEP 06 (2021) 093
and  JHEP 11 (2020) 042

��(�+ → �+��) × ����

@PRL. 126 (2021) 12,121801t;   
   PRL. 122 (2019) 021802; 
   PRL. 134 (2025) 8, 081802 (new data)

��(�� → ����) × ����
�(1) �(102)

SM Data 

pThe � → ��� results imply that there is still room for new physics (NP), 
but maybe not so much. In addition,  they are only sensitive to the 
vectorial (parity even) couplings of the � → � currents.

Old: ��(�� → ����) < � × ��−� (��% �. �. )

New: ��(�� → ����) < �. � × ��−� (��% �. �. )

New data (in progress)
https://na48.web.cern.
ch/Welcome/papers/
Overview.html



� → ��� transitions： �+ → �+�� and �� → ���� 
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p Latest experimental results

�(1) �(109)

SM Data 

@PRD 63 (2001) 032004

��(�+ → �+����) × ����

@PRD 84 (2011) 052009

��(�� → ������) × ����
�(1) �(106)

SM Data 

p Although the � → ���� modes receive contributions from both the vectorial 
and the axial-vectorial type of NP, the current results provide little constraints 
on them. 

p Note that the nonperturbative inputs in previous works are roughly estimated.



� → ��� transitions： �� → ����  
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pHyperons might be a game changer

Ø Having spin ½ (instead of spin 0), they lead to different decay modes, observables, as well as 

sensitivities to the vectorial and the axial-vectorial structure of the � → � currents

p Experimentally and theoretically more challenging, compared to their 
kaon siblings

Ø No direct data yet, but promising data from BESIII
Hai-Bo Li, Front.Phys.(Beijing) 12 (2017) 5, 121301

Ø On the theory side, the first studies just appeared
Xiao-Hui Hu et al., CPC43(2019)093104;    Jusak Tandean, JHEP04(2019)104; 
Jhih-Ying Su et al.,y, PRD 102 (2020) 075032;    Gang Li et al., PRD 100 (2019) 075003

Ø More theoretical studies are needed
ü Constraints from/compare with more kaon modes
ü The state of the art results from covariant baryon chiral perturbation theory for the relevant form factors

Li-Sheng Geng et al., PRD 79, 094022 (2009) ;   T. Ledwig et al., PRD 90, 054502 (2014)



� → ��+�− transitions： �� → �+�− and �+ → �+�+�− 
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p The branching ratio of the KL → μ+μ− decay  and the leptonic  forward-
backward asymmetry (AFB) of the K+ → π+μ+μ−  decay  have been 
measured

p� → ��+�− transitions dominated by long-distance contributions

p They  cannot probe all the interesting axial-vectorial, scalar operators,  
and their spin flip structures

BR(�� → �+�−)�� = �. ��(��) × ��−�

BR(�� → �+�−)��� = �. ��(��) × ��−�

PDG 2024

���(�+ → �+�+�−)�� = �

|���|(�+ → �+�+�−)��� = �. � × ��−�，�� ��% ��

 NA48/2 collaboration, PLB 697, 107 (2011)

|���|(�+ → �+�+�−)��� = (� ± �. �) × ��−�

NA48/2 collaboration, JHEP 11 (2022) 011, JHEP 06 (2023) 040 



� → ��+�− transitions： �� → ���+�− 
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pOn the theory side, only Prof.  Xiao-Gang He and his collaborators have 
studied the rare hyperon decay Σ+ → pμ+μ−

p Experimentally, no direct data for the leptonic  forward-backward 
asymmetry (���) of the �� → ���+�−  decay yet, but promising 
measurement from LHCb

LHCb collaboration, JHEP05(2019)048

Xiao-Gang He et al., PRD 72 (2005) 074003
Xiao-Gang He et al., JHEP10 (2018) 040

VS.

�+ → ��+�− VS. �� → �+�− and �+ → �+�+�−



Our purpose 

36

l Study the hyperon rare decays and improve the QCD non-perturbative contributions.
l To investigate wthether the anticipated data of  hyperon rare decays can better 

constrain new physics or not, compare with their kaon counterparts.

p � → � � �  transitions dominated by short−distance contributions

V.S

BRSM~10−15

BRexp < 4.3 × 10−5

    Compared to hyperons, 
very weak constraints on NP



Our purpose 
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Use the low energy 
effective Hamiltonian 
approach to derive the 
relevant physics 
observables

Deal with the non-
perturbative effects 
model-independently

Compare hyperon 
decays with kaon 
decays to contrain NP

p � → ��+�− transitions dominated by long-distance contributions



Low-energy effective Hamiltonian approach 

38

p In SM
Ø � → � � �  ����������� 

Ø � → ��+�− ����������� 

Short-distance

Long-distance

p In BSM (NP)
Ø The NP operators can be obtained by a chiral flip in the quark current, and one 

also has scalar, pseudoscalar and their primed operators

Ø Tensor operator does not contribute to � → ��+�− transitions                         
                                              J. Martin Camalich et al, PRL.113(2014)241802
                 



Consequence of �� → ���+�− 

39

p Decay width expanded in � reads

pThe branching ratio and forward-backward asymmetry are defined as
l �2(0) is relevant for ���
l Form factors  a,b and  c,d are calculated by  ��� and  vector-meson-dominance model  

H. Neufeld, NPB 402 (1993) 166;   Xiao-Gang He et al., PRD 72 (2005) 074003

BR = 2��1�(�1 +
1
3

�3)

��� =
�2

�1 + 1
3 �3



� → ��� transitions: hyperon vs. kaon

40

Ø Branching ratio results predicted in SM for  �1 → �2�� decays are ~10−13, consistent 
with  those  predicted in the following Refs:

Ø ����
� + ���

�   is constrained more stringently by the kaon modes 
Ø �� → ���� are better than their kaon siblings to constrain ����

� − ���
�  

Xiao-Hui Hu et al., CPC43(2019)093104;    Jusak Tandean, JHEP04(2019)104; 
Jhih-Ying Su et al.,y, PRD 102 (2020) 075032;    Gang Li et al., PRD 100 (2019) 075003



� → ��+�− transitions: hyperon vs. kaon

41

Ø Here, we are assuming a hypothetical measurement of ���(�+ → ��+�−) that is 

identical to �+ → �+�+�−.

Ø Current kaon bounds except for the ��10 + �10
′  scenario are a few orders of 

magnitude better than those of �+ → ��+�− if measured up to the same precision.

Essentially, the cases 1 and 2 are 
caused by the S/P wave puzzle.



Impact of renormalization groups on NP constraints 

42

p For this purpose, we must work in the SMEFT. The Lagrangian of SMEFT describing 
the NP contributions to down-quark FCNC semi-leptonic decays is

p We work in the basis where the down type quark mass matrix is diagonal.  At  the 
electroweak scale � one has



Impact of renormalization groups on NP constraints 
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By fine-tuning the couplings ��
����

�� =− ��
����

��, one can obtain

When running the RG equations from the NP scale Λ to the electroweak scale �:  

Assuming that � = 10�, one 
obtains

E.E. Jenkins et al.,  JHEP 10 (2013) 087
E.E. Jenkins et al.,  JHEP 01 (2014) 035
R. Alonso et al.,  JHEP 04 (2014) 159

p Example: � → ��� transitions
We consider a �’ model in which a single �’~(1,1,0) gauge boson couples to left-
handed leptons. The Lagrangian for this model is



Impact of renormalization groups on NP constraints 

44

l we see that the loop effects of the RGE generate a non-vanishing vectorial contribution at the scale �, 
which is about 1% of that of the axial-vectorial contribution.

      As shown in the left table, �+ → �+�� data 
yields the bound on ����

� + ���
�   at �(1).Using the 

indirect relation of RGE above, one can obtain 
the bound on ����

� − ���
�  at the order of 102.

(����
� − ���

� )~100(����
� + ���

� )

The renormalization group effects lead to an 
indirect relation between bound of NP, which is

The indirect bound (102) on ����
� − ���

�  is stronger 
than the direct bound of 103 that could be  
obtained by the future BESIII data from the 
hyperon modes shown in the left table.

l From the perspective of a UV theory, it is important to consider the loop effects from 
renormalization group evolution when connecting the low-energy EFT to new physics model.



Impact of renormalization groups on NP constraints 

45

lHowever, when connecting the low-energy EFT to new 
physics model, hyperons could better constrain some 
combinations of Wilson coefficients if a sensitivity of 10−8 
for the branching fractions is achieved by hyperon 
factories (BESIII, STCF) in the future.

For hyperon rare decays, 
the anticipated BESIII 
BR~10−6 
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Summary and outlook

47

p EOMS χPT has improved the previous studies in WRHDs and non-
perturbative contributions of the rare hyperon semi-leptonic decay �� →
���∗ → ��� �

pWe plan to apply the EOMS χPT to study the S/P puzzle and CP violation 
in non-leptonic hyperon decays



Why CP violation

48

l Explaining the matter-antimatter asymmetry

l Testing SM and searching for NP

l CPV has been observed in the K[1], B[2] and D[3] 

mesons sequentially during the past 60 years

l CPV attributed to an irreducible phase in the 

    CKM quark-mixing matrix

l The CPV in the baryon system has not yet 

    been established 

 Discovery of CP violation @ 1980

Mechanism of CP violation @ 2008

l Nobel prizes in physics

[1] Phys. Rev. Lett. 13, 138-140 (1964)
[2] Phys. Rev. Lett. 87, 091801(2001);
      Phys. Rev. Lett. 87,091802 (2001)
[3] Phys. Rev. Lett. 122, 211803 (2019)



Many studies on baryon CPV

49

Experiment measurements
l LHCb,Nature Phys. 13, 391-396 (2017)
l LHCb,JHEP 06, 108 (2017)
l LHCb,JHEP 03, 182 (2018)
l LHCb,Phys. Lett. B 787, 124-133 (2018)
l LHCb,JHEP 08, 039 (2018)
l LHCb,Eur. Phys. J. C 79, no.9, 745 (2019)
l LHCb,Phys. Rev. D 102, no.5, 051101 (2020)

l LHCb,Eur. Phys. J. C 80, no.10, 986 (2020)
l Belle,Sci. Bull. 68, 583-592 (2023)

l BESIII,Nature Phys. 15, 631 (2019)
l BESIII,Phys. Rev. Lett. 125, no.5, 052004 (2020)
l BESIII,Nature 606, 64 (2022)
l BESIII,Phys. Rev. Lett. 129, 131801(2022)
l BESIII,Phys. Rev. Lett. 129, 212002(2022)
l BESIII,Phys. Rev. Lett. 130, 211901(2023)
l BESIII, arXiv:2408.16654(2024)

 Theoretical studies

In this presentation, we will 
focus on the hyperon system. 

Beauty baryon

Charm baryon

Hyperon

• Y.K. Hsiao et al, Phys.Rev.D 95 (2017) 9, 093001
• Shibasis Roy et al, Phys.Rev.D 101 (2020) 3, 036018
• Shibasis Roy et al, Phys.Rev.D 102 (2020) 5, 053007
• Ignacio Bediaga et al, Prog.Part.Nucl.Phys. 114 (2020) 103808
•  Zhen-Hua Zhang et al, JHEP 07 (2021) 177
• Zhen-Hua Zhang et al, Eur.Phys.J.C 83 (2023) 2, 133
• Jian-Peng Wang et al, Arxiv: 2211.07332
• Yin-Fa Shen et al, Phys.Rev.D 108 (2023) 11, L111901
• Jian-Peng Wang et al, Arxiv: 2411.18323
• Jian-Peng Wang et al, Chin.Phys.C 48 (2024) 10, 101002
• Ji-Xin Yu et al, Arxiv: 2409.02821 

• Zhen-Hua Zhang, Phys.Rev.D 107 (2023) 1, L011301
• Cai-Ping Jia et al, JHEP 11 (2024) 072

• Xiao-Gang He et al, Science Bulletin 67 (2022) 1840–1843
• Nora Salone et al, Phys.Rev.D 105 (2022) 11, 116022
• Tandean J et al, Phys.Rev.D 67 (2003) 056001
• Jusak Tandean, Phys.Rev.D 69 (2004) 076008



Discovery of baryonic CP violation
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[LHCb, 2503.16954, submitted to Nature]



  Hyperon non-leptonic decays 

51

�� → �� �

l The direct CPV is  mult ipl icat ively 
s u p p re s s e d  b y  b o t h  t h e  s t ro n g 
interaction phases � as well as by the 
∆I = 3/2 suppression A3/A1~B3/B1~1/20

l CPV observables of the largest signal  
are defined by a combination of the 
decay asymmetry parameters � and � 
proposed T.D.Lee and C.N.Yang.



 Why study the hyperon non-leptonic decays 

52

• Jusak Tandean et al , PRD 67 (2003) 056001
• Salone N et al , PRD 105 (2022) 11, 116022
• Xiao-Gang He et al, Sci.Bull. 67 (2022) 1840-1843
• BESIII Collaboration,arXiv:2312.17486

p CP violation has not yet been established in the baryon sector. Hyperons  are a 
good opportunity to observe the CPV in the baryon systems.

pBESIII experiment cannot test the CPV in SM.  It is hopeful in the future super 
tau-charm factories.

p Large theoretical uncertainties are related to the S/P puzzle



Non-leptonic decay amplitudes—S/P puzzle

53

pAmplitudes of hyperon non-leptonic decay

Here, both S-wave amplitude �� and P-wave amplitude �� are  functions of LECs hD and hF  

p The so-called S/P puzzle: if the two LECs hD and hF can describe well 
the experimental S-wave amplitudes, they reproduce very poorly the P-
wave amplitudes

As a result, we only updated the values of hD and hF by fitting to the 
experimental S -wave amplitudes for hyperon non-leptonic decays



 Why study the hyperon non-leptonic decays 
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p χPT is a powerful tool for hyperon non-
leptonic decays. Previous theoretical 
studies in HB χPT neglected the 
contributions of either counterterms or 
intermediate decuplet-baryons.

p  Previous theoretical studies satisfies 
�� = �/� rule.

Theories Experiments
p The recent BESIII measurements of 

asymmetry parameters associated with 
the S/P puzzle deviate from previous 
experimental values.

p Ratio of asymmetry parameter reported 
recently from BESIII violates �� = �/� rule 
(=1, satisfies)

Borasoy B et al, EPJC 6 (1999) 85-107
Abd El-Hady A, PRD 61 (2000) 114014HB χPT:

BESIII: PRL 132 (2024) 10, 101801



 What to do next 

ü Study the hyperon non-leptonic decays in covariant baryon chiral 
perturbation theory (BχPT) with the extended-on-mass-shell (EOMS) 
renormalization scheme

ü Consider the effects  of  the �� = 1/2 rule violation

ü Consider the contributions of counterterms, intermediate octet, and 
decuplet-baryons, even intermediate resonant states

p Step 1:  Investigate the S/P puzzle (ongoing)

p Step 2:  Revisit  CP violation (To be done)

ü Taking the S-wave and P-wave amplitudes provided in covariant baryon 
chiral perturbation theory as inputs to predict the CP violation of hyperon 
non-leptonic decays.



Thanks for your attention！


