Perspective of vector charmonium-like states at STCF in coupled-channel analysis

arXiv: 2312.17658v3

Satoshi Nakamura (Shandong Univ.)

Collaborators: X.-H. Li, H.-P. Peng, X.-R. Zhou (USTC), Z.-T. Sun (SDU)

Introduction

From **BESIII** to **STCF**

BESIII as vector-charmonium factory

Advantage of direct production

compared to ISR method

High-precision study of exotic Y states

BESIII accumulated high-precision cross-section data for various final states

\rightarrow Coupled-channel analysis for determining vector charmonium poles

Our combined analysis of BESIII and Belle data for various $e^+e^- \rightarrow c\bar{c}$ processes over $3.75 \leq \sqrt{s} \leq 4.7$ GeV

 $e^{+}e^{-} \rightarrow D^{(*)}\overline{D}^{(*)}, D_{S}^{(*)}\overline{D}_{S}^{(*)}, J/\psi \eta^{(\prime)}, \chi_{c0}\omega, \Lambda_{c}\overline{\Lambda}_{c} \quad (10 \text{ two-body final states})$ $e^{+}e^{-} \rightarrow \pi D^{(*)}\overline{D}^{(*)}, J/\psi\pi\pi, \psi'\pi\pi, h_{c}\pi\pi, J/\psi K\overline{K} \quad (7 \text{ three-body final states})$ $e^{+}e^{-} \rightarrow \eta_{c}\rho\pi \ (\rho \rightarrow \pi\pi) \quad (1 \text{ four-body final states})$

- Approximate three-body unitarity model
- Fit both cross sections and invariant mass distributions
- Extract vector charmonium and Zc poles
- Compositeness \rightarrow identify hadron-molecule-dominated states

STCF will significantly advance coupled-channel analysis

	BESIII	\rightarrow	STCF
\sqrt{s} (charmonium region)	3—5 GeV		3—7 GeV
${\cal L}$ (Luminosity)			$\sim 50 imes \mathcal{L}$ (BESIII)

- Wider \sqrt{s} coverage \rightarrow discovery potential of heavier (vector) charmonium states
- Higher \mathcal{L} -- more precise data

 \rightarrow more precise determinations of charmonium poles and residues (statistical improvement)

-- more detailed data (Dalitz plots and angle distribution at each \sqrt{s} , etc.)

 \rightarrow less model-dependent charmonium poles and residues (systematics improvement)

 \rightarrow more detailed charmonium properties: branching ratios, compositeness

This talk

- (short) review of our coupled-channel analysis of BESIII $e^+e^- \rightarrow c\bar{c}$ data
 - -- Theoretical framework
 - -- Result on fit
 - -- Result on vector charmonium poles, compositeness

• Along with the analysis result, expected improvements with STCF data will be discussed

Full amplitude for $e^+e^- \rightarrow$ three-body final states

Dressed vertices (propagator) : bare vertices (propagator) dressed by hadron scattering

Unitarity requirement

 $\pi D^{(*)}\overline{D}^{(*)}$, $J/\psi\pi\pi$, $\psi'\pi\pi$, $h_c\pi\pi$, $\eta_c\rho\pi$, $J/\psi K\overline{K}$

 ψ production, propagation, decay

Non-resonant mechanisms are also included (no ψ excitations)

Coupled-channels

(quasi) two-body channels included; $J^{PC} = 1^{--}$

 $D_{1}(2420)\overline{D}^{(*)}, \ D_{1}(2430)\overline{D}^{(*)}, \ D_{2}^{*}(2460)\overline{D}^{(*)}, \ D^{(*)}\overline{D}^{(*)}, D_{s1}(2536)\overline{D}_{s}$ $\omega\chi_{c0}, \ D_{s}^{(*)}\overline{D}_{s}^{(*)}, \Lambda_{c}\overline{\Lambda}_{c}, \ D_{0}^{*}(2300)\overline{D}^{*}, \ f_{0}J/\psi, \ Z_{c}\pi, \ \dots \text{ etc.}$

These channels couple with each other through:

Three-body decays of ψ

 $D_1\overline{D}$ and $D_1\overline{D}^*$ molecule states included

Charmonium poles from non-perturbative couplings between bare ψ and $D_1\overline{D}$, $f_0 J/\psi$, ...

Unitary coupled-channel model : resonance pole (mass, width) and decay dynamics are explicitly related. (unitarity requirement)

Breit-Wigner model : decay dynamics are simulated by BW mass and width parameters

Selected fit results

 $e^+e^- \rightarrow J/\psi \pi^+\pi^-, J/\psi \pi^0\pi^0$

Data: BESIII, PRD 106, 072001 (2022) PRD 102, 012009 (2020)

Peaking structure at √s ~ 4 GeV is from ψ(4040)
 → consequence of the combined fit
 Can be confirmed by STCF

Dip due to X(3872) ? Baru et al. PRD (2024)

 \rightarrow The dip can be confirmed by STCF

Data: BESIII, PRL 119, 072001 (2017)

1-triangle

D

Zc amplitude

J/ψ

1-loop causes $D^*\overline{D}$ thres. cusp enhanced by Zc pole

triangle singularity (TS) occurs at $\sqrt{s} \sim 4.28$ GeV ($\Gamma_{D_1} = 30$ MeV)

STCF : extensive study on \sqrt{s} -dependence of the lineshape

 \rightarrow Disentangle TS and $D^*\overline{D}$ cusp effects

→ More constraints on Zc pole location, $\psi(4230) \rightarrow D_1\overline{D}$ coupling, $D_1\overline{D}$ molecule contents in $\psi(4230)$

14

- $\Lambda_c \overline{\Lambda}_c$ threshold enhancement \leftarrow attractive $\Lambda_c \overline{\Lambda}_c$ interaction (pole near threshold is likely)
- $\Lambda_c \overline{\Lambda}_c$ threshold cusp is important to fit $e^+e^- \rightarrow \pi D^* \overline{D}^*$ data at $\sqrt{s} \sim 4.57$ GeV \leftarrow STCF confirms the dip
- STCF will measure more baryonic channels, $\Sigma_c \overline{\Sigma}_c$, $\Lambda_c (2595) \overline{\Lambda}_c$, etc. and threshold enhancements (nearby poles)

Importance of threshold effects to understand charmonium mass

Importance of threshold effects to understand charmonium mass

- This process is strongly suppressed below $D_2^*\overline{D}$ threshold ($\Gamma_{D_2} \sim 47$ MeV)
- $D_2^*\overline{D}$ channel is d-wave \rightarrow centrifugal barrier suppression near threshold
- Peak position is shifted from pole position ($M_{\rm pole}$ =4390 MeV) by ~30 MeV to higher \sqrt{s}
- Fit cross-section (σ) data with $|A_{BW}|^2 \times (\pi D\overline{D}$ phase-space) is not justified (M_{BW} =4420 MeV \leftarrow artifact)

Importance of threshold effects to understand charmonium mass

- Peak positions (lineshape) can be shifted from pole locations by threshold effects
- Fit cross-section data (σ) with $|A_{BW}|^2 \times$ (phase-space) is not justified
- Dalitz-plot data is important to constrain $D_I^* \overline{D}^{(*)}$ contributions

and correctly find pole locations \rightarrow STCF can provide detailed data

Poles and resonance properties

Pole locations $\operatorname{Re} E_{\psi}(\mathsf{MeV})$ 3700 3800 3900 4000 4100 4200 4300 4400 4500 0 $R(3760) \psi(3770)$ H Ŧ 1 Ŧ ψ(4230) -20 ₩ *ψ*(4415)+ нн -40

4600

4700

Pole locations $\operatorname{Re} E_{\psi}(\mathsf{MeV})$ 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 0 $R(3760)\psi(3770)$ Ħ 1 \mathbf{H} ψ(4230)[°] -20 Ŧ ψ(4415)| Im E_{ψ} (MeV) HH -40 STCF will improve both statistical precision and systematics (accuracy) (4660)-60 ф ₩ ψ(4360) PDG, BESIII *Y*(4320) -80 *G*(3900) resonance virtual state include counterparts of all PDG and BESIII states bound state -100

 $D^*\overline{D}^* = D_s^*\overline{D}_s$

 $D\overline{D}$ $D^*\overline{D}$ $D_s\overline{D}_s$

 $D_s^* \overline{D}_s^* \quad D_1 \overline{D} \quad D_2^* \overline{D} \qquad D_1 \overline{D}^* D_2^* \overline{D}^* D_{s1} \overline{D}_s \quad \Lambda_c \overline{\Lambda}_c$

21

4700

Compositeness Hadron-molecule content in vector charmonium states

Charmonium spectrum ($J^{PC} = 1^{--}$)

e <	4800		Quark Model	Exp.(normal)	Exp. (exotic)
S	4600	[-		Y(4660)
Mas	4400	 	$\psi(4S)$	$\psi(4420)$	Y(4360) Y(4230)
	4200		$\psi(2D)$	$\psi(4160)$	
	4000	 	$\psi(3S)$	$\psi(4040)$	
	3800	 	$\psi(1D)$	$\psi(3770)$	
	3600		$\psi(2S)$	ψ'	- Quark model
	3400	-			(Godfrey Isgur)
	3200				 Exp. (normal) Exp. (exotic)
	3000		$\psi(1S)$	J/ψ	

Reconsideration of quark model ?

Conventional method

Normal ψ masses \rightarrow assigned to quark-model states (input)

 \rightarrow quark-model parameters determined

Our analysis suggests:

- $\psi(4040)$ (conventionally assumed to be normal ψ) is mostly $D^*\overline{D}^*$ molecule
- Y(4230) and Y(4360) are mix of molecule (~60%) and cc
 (~40%)

No simple assignment of quark-model state to resonance

STCF would further request reconsideration

of conventional wisdom

Summary

- Reviewed global coupled-channel analysis of $e^+e^- \rightarrow c\bar{c}$ data in $\sqrt{s} = 3.75 4.7$ GeV
- Reasonable fits overall
- Vector charmonium poles extracted
 - -- All PDG states found
 - -- Several more states near open-charm thresholds
- Compositeness calculated \rightarrow many hadron-molecule-dominated states identified, including ψ (4040)

STCF significantly boosts coupled-channel analysis

- Higher $\sqrt{s} \rightarrow$ discovery potential of heavier (vector) charmonium states
- Higher $\mathcal{L} \rightarrow$ more precise and detailed data (Dalitz plots at each \sqrt{s} , etc.)
 - -- more precise vector charmonium poles and residues (statistical improvement)
 - -- less model-dependent charmonium poles and residues (systematics improvement)

Y width problem

Why Y states seem to have different widths for different final states ?

Y width problem revealed limitation of single-channel analysis

Single-channel analysis: analyze different final states with different models (usual experimental analysis)

Interference among overlapping resonances and non-resonant contributions is process dependent

 \rightarrow Process dependent line-shape

Single-channel fits give process-dependent resonance parameters

 \rightarrow Y width problem created

Y-width problem is artifact of single-channel analysis

Coupled-channel analysis

Analyze different final states simultaneously with a unified and (semi-)unitary model

Describe different lineshapes in different final states due to:

- Interference between various charmonium states and non-resonant amplitude
- Kinematical effects (threshold opening, triangle singularity)

Coupled-channel analysis clarifies how process-dependent Y lineshapes come about

At the same time, the analysis determines:

(i) vector charmonium mass, width (poles)

(ii) couplings of the poles with decay channels (residues)

Prerequisite to studying this

More outcomes from coupled-channel analysis

(i) vector charmonium mass and width (poles)

(ii) couplings of the poles with decay channels (residues)

Input for further calculations

• Compositeness: probability of finding hadron molecule components in resonance

 \rightarrow quantity to identify hadron molecule states

Baru et al., PLB 586, 53 (2004) Sekihara et al. PTEP 063D04 (2015)

• Branching ratios: mostly unknown for charmonia of M > 4 GeV

including well-established $\psi(4040), \psi(4160), \psi(4415)$

Not straightforward, prescription needed Heuser et al., EPJC 84, 599 (2024) 30

Understanding Y inevitably involves understanding Zc

Zc(3900), Zc(4020) : outstanding exotic candidates including $c\bar{c}u\bar{d}$

GeV/c² 350 ← Zc(3900) / 0.015 250 $e^+e^- \rightarrow I/\psi \pi^+\pi^-$ at Y(4220) region \rightarrow 200 150 EVENTS 100 3.8 3.4 3.6 4.04.2 $m_{J/\psi\pi^{\pm}}$ (GeV/c²)

Zc appears as:

ightarrow Y and Zc properties should be highly correlated

Global $e^+e^- \rightarrow c\bar{c}$ analysis consider Zc signals \rightarrow address Y and Zc properties simultaneously

Related works previously done

Three-body model

* M. Cleven, Q. Wang, F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Zhao, PRD 90, 074039 (2014)

Analysis of $e^+e^- \rightarrow \pi D \overline{D}^*$, $J/\psi \pi \pi$, $h_c \pi \pi$ cross section and invariant mass in $4.1 \leq \sqrt{s} \leq 4.3$ GeV [Y(4230) region]

Pioneering works, but the data were very limited \rightarrow limited conclusions on Y(4230) properties

* L. Detten, C. Hanhart, V. Baru, arXiv:2309.11970

Fitting data in Y(4230) region; more final states than the above

Fits to cross section data for 3-4 processes

* D.-Y. Chen, X. Liu, T. Matsuki, Eur. Phys. J. C 78, 136 (2018)

Breit-Wigner fit to $e^+e^- \rightarrow \pi D \overline{D}^*$, $J/\psi \pi \pi$, $h_c \pi \pi$ cross sections \rightarrow Y(4320) and Y(4390) not necessary

* Z.-Y. Zhou, C.-Y. Li, Z. Xiao, arXiv:2304.07052

Two-body unitary model fitted to $e^+e^- \rightarrow D^{(*)}\overline{D}^{(*)}$, $\pi D\overline{D}$ cross sections $\rightarrow \psi(4160)$ is Y(4230)

Our analysis includes significantly more complete dataset → More reliable conclusion

Coupled-channels

assumed to be molecule-dominant \rightarrow not directly from ψ decay

(quasi) two-body channels included; $J^{PC} = 1^{--}$

 $D_0^*(2300), f_0, f_2, Z_c, Z_{cs}$ as (virtual) poles in two-body scattering amplitudes

 $f_0 J/\psi, f_2 J/\psi, f_0 \psi', f_0 h_c$

$Z_{c(s)}$ amplitude

 $Z_{c}: I J^{PC} = 1 1^{+-} D^{*}\overline{D} - D^{*}\overline{D}^{*} - J/\psi\pi - \psi'\pi - h_{c}\pi - \eta_{c}\rho \text{ couple-channel scattering amplitude}$ $Z_{cs}: I J^{P} = \frac{1}{2} 1^{+} D_{s}^{*}\overline{D} - D_{s}\overline{D}^{*} - J/\psi K$

driven by contact interactions; s-wave interactions except $h_c \pi$ p-wave interaction

no coupling between hidden-charm channels (e.g. $v_{J/\psi\pi,J/\psi\pi} = v_{J/\psi\pi,\psi'\pi} = 0$)

Nonzero couplings are determined by the global fit \rightarrow poles may be generated if required by data 34

Short-range mechanisms among open-charm channels

Contact interactions among $D_1\overline{D}^{(*)}$, $D_2^*\overline{D}^*$, $D^{(*)}\overline{D}^{(*)}$, $D_{s1}\overline{D}_s$, $D_s^{(*)}\overline{D}_s^{(*)}$, $\Lambda_c\overline{\Lambda}_c$ channels

 \rightarrow fitted to data (advantage of separable interactions)

- High-precision BESIII data require these contributions (enhanced threshold cusps)
- Potentially generate hadron-molecule states

Global analysis can examine if Y(4220) as $D_1\overline{D}$ molecule and Y(4360) as $D_1\overline{D}^*$ molecule

ψ production mechanisms

 $e^+e^- \rightarrow c\bar{c}$ data in 3.75 $\leq \sqrt{s} \leq 4.7$ GeV region \rightarrow Charmonium excitations are important mechanism

Data determine how many bare states to be included (5 bare states) and which charmonium states exist

Expected states $\psi(3770), \psi(4040), \psi(4160), \psi(4415), Y(4220), Y(4360)$

Data is not sufficient for coupled-channel analysis in $\sqrt{s} > 4.6$ GeV (three-body final states including $c\bar{c}s\bar{s}$)

 \rightarrow Y(4660) is not included in coupled-channel amplitude \rightarrow included as a Breit-Wigner amplitude

36

Three-body decays of ψ

Selected important diagrams; diagrams with more loops are usually more suppressed Different processes share the same interactions \leftarrow unitarity requirement

(until infinite loops)

 Z_c amplitude

 $D^*\overline{D} - D^*\overline{D}^* - J/\psi \pi - \psi'\pi - h_c\pi - \eta_c\rho$ coupled-channel scattering amplitude ($J^{PC} = 1^{+-}$)

 $\rightarrow D^*\overline{D}$ and $D^*\overline{D}^*$ threshold cusps will be created in invariant mass distributions

Zc(3900) and Zc(4020) poles may also be generated (if needed by data) to enhance the cusps

Fitting parameters in global analysis

- * bare ψ masses (5 bare states)
- * bare ψ coupling constants (real)

* bare photon- ψ coupling constants (real)

* non-resonant photon coupling constants (real)

* $\psi(4660), \psi(4710)$ Breit-Wigner mass, width, vertices

* coupling constants in Z_c amplitude :

 $v_{D^*\overline{D},D^*\overline{D}}, v_{D^*\overline{D},J/\psi\pi}, v_{D^*\overline{D},\psi'\pi}$ etc.

- * Contact-interaction strengths among open-charm channels
- * Cutoffs in non-resonant vertices for

 $\gamma^* \to D^{(*)}\overline{D}^{(*)}, D_s^{(*)}\overline{D}_s^{(*)}, \Lambda_c\overline{\Lambda}_c$

In total, 200 fitting parameters

 $\chi^2/\text{ndf} = 2320/(1635 - 200) \sim 1.6$

 $e^+e^- \rightarrow \psi' \pi^+\pi^-$

- Data: BESIII, PRD 104, 052012 (2021)
 - Overall good fit
 - Enhancement at ~ 4.03 GeV is from ψ(4040)
 ← consequence of coupled-channel fit
 - 1-triangle contribution is large at $\psi(4220)$ peak

 $e^+e^- \rightarrow \psi' \pi^+\pi^-$

Fit to $\psi'\pi$ invariant mass distributions

destructive constructive destructive

$e^+e^- \rightarrow \psi' \pi^+\pi^-$

Interference erase cusp structures

 \rightarrow Clearer cusp structures

First explanation of this rapid change of lineshape

 $e^+e^- \rightarrow D^{(*)}\overline{D}^{(*)}$

Fitting cusps \rightarrow good constraints on interactions among open-charm channels

→ good constraints on existence of $D_{(I)}^{(*)}\overline{D}^{(*)}$ molecules

 $e^+e^- \rightarrow \mu^+\mu^-$ cross section prediction

47

from $J^{PC} = 1^{+-} D^*\overline{D} - D^*\overline{D}^* - J/\psi\pi - \psi'\pi - h_c\pi - \eta_c\rho$ couple—channel amplitude

 $D^*\overline{D}$, $D^*\overline{D}^*$ virtual poles (below thresholds)

Zc(3900) pole: comparison with LQCD result

LQCD ($m_{\pi} = 411$ MeV) HAL QCD, J. Phys. G 45, 024002 (2018) $m_{D^*} + m_D - (93 \pm 55 \pm 21) + (9 \pm 25 \pm 7)i$ MeV

 $S(\{-k_i^*\}) = S^*(\{k_i\})$ applied; PRD 105, 014034 (2022)

This work $m_{D^*} + m_D - (38 \pm 7.4) + (19 \pm 1.6)i$ MeV

PDG

 $m_{D^*} + m_D + (11.9 \pm 2.6) - (14.2 \pm 1.3)i$ MeV

LQCD and this work are fairly consistent (virtual poles)

Zc(3900) pole: virtual or resonance

In literature, various models are used to describe Zc(3900)

 \rightarrow fit $J/\psi\pi$ and $D^*\overline{D}$ invariant mass distributions, NOT cross-section data

 \rightarrow either virtual or resonance solutions How to discriminate ?

Searching Zc-resonance solution

energy-dependent $D^*\overline{D}^{(*)}$ interactions in default-fit model \rightarrow refit all parameters for global fit $\rightarrow \chi^2 \sim 2510$ \rightarrow not comparable to the default model with $\chi^2 = 2320$ (Zc-virtual solution)

Suggestion:

Fitting cross section data may discriminate

Zc pole location

ψ poles from their dressed propagator

(we are not using BW)

Search complex energy E_{ψ} where $G_{\psi}(E_{\psi}) = \infty$ (E_{ψ} : pole energy, pole position) by analytical continuation of $G_{\psi}(E)$

	38,88]	$PDG(\psi)$ [4], BESIII [16,		work	This v
		Γ (MeV)	$M ({ m MeV})$	$\Gamma \ ({\rm MeV})$	$M ({ m MeV})$
M	$\mathcal{R}(3760)$	32.8 ± 5.8	3751.9 ± 3.8	47.3 ± 2.6	3764.2 ± 2.0
Г =	$\psi(3770)$	27.5 ± 0.9	3778.1 ± 0.7	29.9 ± 2.3	3780.2 ± 1.2
	G(3900)	179.7 ± 14.1	3872.5 ± 14.2	127.5 ± 6.7	3898.4 ± 0.9
	$^{\mathrm{r}}D_{s}\bar{D}_{s}$	—	—	96.8 ± 10.4	3956.1 ± 1.0
N	$\psi(4040)$	80 ± 10	4039 ± 1	26.3 ± 1.0	4029.2 ± 0.4
sa	$^{\mathrm{v}}D_{s}^{*}\bar{D}_{s}$	—	—	49.0 ± 0.3	4052.4 ± 0.4
	$\psi(4160)$	70 ± 10	4191 ± 5	129.3 ± 4.2	4192.2 ± 2.2
	$^{\mathrm{v}}D_{s}^{*}\bar{D}_{s}^{*}$	—	_	40.3 ± 1.0	4216.2 ± 0.5
	$\psi(4230)$	48 ± 8	4222.5 ± 2.4	46.4 ± 2.6	4229.9 ± 0.9
	Y(4320)	127 ± 17	4298 ± 12	138.2 ± 4.4	4308.1 ± 2.2
	$\psi(4360)$	118 ± 12	4374 ± 7	122.8 ± 6.7	4346.2 ± 3.8
	$\psi(4415)$	62 ± 20	4421 ± 4	106.5 ± 4.1	4390.1 ± 2.0
	${}^{\mathrm{b}}D_{s1}\bar{D}_s$	—	_	16.4 ± 2.1	4496.3 ± 3.1
	${}^{\mathrm{b}}\Lambda_car\Lambda_c$	—	_	-5.2 ± 7.6	4579.6 ± 1.7
← BW fit	$\psi(4660)$	72^{+14}_{-12}	4630 ± 6	134.9 ± 5.9	4655.9 ± 3.0

Resonance parameters

$$M = \operatorname{Re}[E_{\psi}]$$
$$\Gamma = -2 \times \operatorname{Im}[E_{\psi}]$$

No Y-width puzzle by construction:

same Y-widths for all final states

Hadron-molecule poles

Pole locations (no coupling to bare ψ)

Compositeness

Normalization of resonance (Gamow) state
$$(\psi|\psi) = 1$$
 $H|\psi\rangle = \left(M - i\frac{\Gamma}{2}\right)|\psi\rangle$
Insert complete set $1 = \sum_{a} |\psi_a\rangle\langle\psi_a| + \sum_{j} \int \frac{d^3q}{(2\pi)^3} |q_j\rangle\langle q_j|$
bare state label Two-body channel label
 $1 = \sum_{a} (\psi|\psi_a\rangle\langle\psi_a|\psi) + \sum_{j} \int \frac{d^3q}{(2\pi)^3} (\psi|q_j\rangle\langle q_j|\psi) = \sum_{a} Z_a + \sum_{j} X_j;$
elementariness of bare state *a* Compositeness of channel *j*
 $X_j = -\frac{g_j^2}{\frac{1}{2}} \left[\frac{dG_j}{dE} \right]_{E=M_{\rm R} - i\Gamma_{\rm R}/2}$ with $G_j = \int \frac{d^3q}{(2\pi)^3} \frac{[f(q)]^2}{E - E_{j1} - E_{j2}} = \oint_{j2}^{j1} \oint_{j2}^{j1}$

residue

Caveat on compositeness

$$X_{j} = -\frac{g_{j}^{2}}{\left[\frac{dG_{j}}{dE}\right]}_{E=M_{\mathrm{R}}-i\Gamma_{\mathrm{R}}/2} \quad \text{with} \quad G_{j} = \int \frac{d^{3}q}{(2\pi)^{3}} \frac{[f(q)]^{2}}{E-E_{j1}-E_{j2}} = \underbrace{\overbrace{j2}^{j1}}_{j2}$$
residue

Compositeness depends on form factors (model dependent)

 \rightarrow model-independent at shallow bound state limit (X can be expressed with scattering length)

- For p-wave channels $(D\overline{D}, D^*\overline{D}, D^*\overline{D}^*, \text{etc.})$, more dependent on form factor
- Difficult to interpret Im[X], X < 0, X >1
- When | Im[X] | << 1, 0 < X < 1, compositeness may suggest hadron-molecule contents in resonance

Pole locations

Pole locations

Pole locations (no coupling to bare ψ)

Compositeness

Pole trajectories (0 \rightarrow full coupling to bare ψ)

Compositeness

$c\bar{c}$ dominated states

 $\psi(3770) \ [D\overline{D}] = -0.66 - 0.41i \quad \rightarrow \ [c\overline{c}] \sim 1.7$

$$\psi(4160) \quad [D^*\overline{D}^*] = 0.26 - 0.03i$$
$$[D_1\overline{D}] = 0.01 - 0.02i \qquad \rightarrow \ [c\overline{c}] \sim 0.85$$
$$[D_s^*\overline{D}_s^*] = -0.10 - 0.04i$$

Y(4320)
$$[D^*\overline{D}^*] = 0.02 - 0.15i$$

 $[D_s^*\overline{D}_s] = 0.05 + 0.06i \rightarrow [c\overline{c}] \sim 1.06$
 $[D_s^*\overline{D}_s^*] = -0.11 - 0.03i$

$$\psi(4415) \quad [D_1\overline{D}] = -0.03 + 0.04i$$
$$[D_1\overline{D}^*] = 0.08 + 0.13i \qquad \rightarrow [c\bar{c}] \sim 0.90$$
$$[D_2^*\overline{D}^*] = 0.06 - 0.03i$$