Search for *CP* violation in $\Lambda_c^+ \to \Lambda K^+$, $\Sigma^0 K^+$, and $\Sigma^+ K_S^0$ decays

<u>Hong-Jian Wang</u>¹, Cheng Wang¹, Pei-Rong Li¹ Rong-Gang Ping^{2,3}, and Xiao-Rui Lyu³

¹Lanzhou University ²Institute of High Energy Physics ³University of Chinese Academy of Sciences

July 3, 2025

STCF Workshop 2025-Xiangtan

P violation in charmed baryon

CP violation in charmed baryon

 $\Lambda_c^+\left(\frac{1}{2}^+\right) \to \Lambda\left(\frac{1}{2}^+\right)K^+(0^-)$ as an example:

$$s = |s|e^{i\xi_s}e^{i\phi_s} \quad \text{under CP transformation} \quad \bar{s} = -|s|e^{i\xi_s}e^{-i\phi_s} \quad \phi \text{ weak phase} \\ \bar{p} = |p|e^{i\xi_p}e^{i\phi_p} \quad \bar{p} = |p|e^{i\xi_p}e^{-i\phi_p} \quad \xi \text{ strong phase} \end{cases}$$

$$\alpha = \frac{2\text{Re}(s^*p)}{|s|^2 + |p|^2} \quad \beta = \frac{2\text{Im}(s^*p)}{|s|^2 + |p|^2} \quad \gamma = \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2}$$

• If CP conserved: $s \xrightarrow{CP} -s$ $p \xrightarrow{CP} p$ $p \xrightarrow{CP} p$ $a \xrightarrow{CP} \bar{\alpha} = -\alpha$ $\beta \xrightarrow{CP} \bar{\alpha} = -\alpha$ $\beta \xrightarrow{CP} \bar{\beta} = -\beta$ $\gamma \xrightarrow{CP} \bar{\gamma} = +\gamma$ $a \xrightarrow{CP} \bar{\alpha} = \frac{\beta + \bar{\beta}}{\alpha - \bar{\alpha}} = \frac{\sqrt{1 - \alpha^{2} \sin\Delta} + \sqrt{1 - \bar{\alpha}^{2} \sin\bar{\Delta}}}{\alpha - \bar{\alpha}}$ $\tan \Delta_{S} = \frac{\beta - \bar{\beta}}{\alpha - \bar{\alpha}} = \frac{\sqrt{1 - \alpha^{2} \sin\Delta} - \sqrt{1 - \bar{\alpha}^{2} \sin\bar{\Delta}}}{\alpha - \bar{\alpha}}$

All polarization induced CPV observables can be derived using $\alpha/\overline{\alpha}$ and $\Delta/\overline{\Delta}$.

Data samples

➤ MC sample is simulated under OSCAR version: 2.6.2

Signal processes:

$$\Lambda K^{+} \text{ channel: } e^{+}e^{-} \to \Lambda_{c}^{+}\bar{\Lambda}_{c}^{-}, \Lambda_{c}^{+} \to \Lambda K^{+}, \text{ and } \Lambda \to p\pi^{-},$$

$$\Sigma^{0}K^{+} \text{ channel: } e^{+}e^{-} \to \Lambda_{c}^{+}\bar{\Lambda}_{c}^{-}, \Lambda_{c}^{+} \to \Sigma^{0}K^{+}, \Sigma^{0} \to \gamma\Lambda \text{ and } \Lambda \to p\pi^{-},$$

$$\Sigma^{+}K_{S}^{0} \text{ channel: } e^{+}e^{-} \to \Lambda_{c}^{+}\bar{\Lambda}_{c}^{-}, \Lambda_{c}^{+} \to \Sigma^{+}K_{S}^{0}, \Sigma^{+} \to p\pi^{0}, \pi^{0} \to \gamma\gamma, \text{ and } K_{S}^{0} \to \pi^{+}\pi^{-}.$$

> Only signal process based on PHSP model is generated, and the size is about 4 million.

Event selection

> Proton:

- $|V_z| < 20 \text{ cm}, |\cos \theta| < 0.93$
- PID: $prob(p) > 0\&&prob(p) > prob(K)\&&prob(p) > prob(\pi)$

> Pion:

- $V_z < 20 \text{ cm}, |\cos \theta| < 0.93$
- ➤ Kaon:
 - $|V_r| < 1 \text{ cm}, |V_z| < 20 \text{ cm}, |\cos \theta| < 0.93$
 - PID: $prob(\pi) > 0\&&prob(\pi) > prob(K)$
- ➤ Good shower:
 - $E > 0.025 \text{ GeV} (\text{barrel: } |\cos\theta| < 0.8325|)$
 - $E > 0.050 \text{ GeV} (\text{endcap: } 0.8325 < |\cos\theta| < 0.9445|)$
 - Angle with charged tracks should be larger than 10°

 $\succ \pi^0$:

- 1C chis<200
- Invariant mass lies in (0.115, 0.150) GeV/ c^2
- $\succ K_S^0$:
 - Primary vertex fit: $\chi^2 < 100$
 - Second vertex fit: $L/\sigma_L > 2$
 - Invariant mass lies in (0.487,0.511) GeV/c^2
- > Λ:
 - Primary vertex fit: $\chi^2 < 100$
 - Second vertex fit: $L/\sigma_L > 2$
 - Invariant mass lies in (1.111,1.121) GeV/c^2
- > Σ^0 : Invariant mass lies in (1.179,1.203) GeV/ c^2
- > Σ^+ : Invariant mass lies in (1.176,1.200) GeV/ c^2

> If there is more than one candidate in one events, the candidate with the minimum $|E_{\Lambda_c^+} - E_{beam}|$ is selected.

> Beam-constrained mass:
$$M_{\rm BC} = \sqrt{E_{beam}^2/c^4 - \left|\hat{p}_{\Lambda_c^+}\right|^2/c^2}$$

Mass spectrum

Modes	ΔΕ	M _{BC}	Efficiency
$\Lambda_c^+ \to \Lambda K^+$			~29.1%
$\Lambda_c^+ \to \Sigma^0 K^+$	[—25,20] MeV	[2.282,2.291] GeV/c ²	~4.8%
$\Lambda_c^+ \to \Sigma^+ K_S^0$			~7.7%

Polarized beam on STCF

Ref. Phys. Rev. D 110.014035 P_T : beam transverse polarization Phys. Rev. D 105.116022 Phys. Rev. D 99.056008 • P_Z : beam longitudinal polarization Λ_c^+ Spin density matrix: e^+ $\rho^{\gamma^*}(\phi_0,\theta_0) = \frac{1}{4} \begin{pmatrix} \frac{1+\cos^2\theta_0}{2} & -\frac{\sin\theta_0\cos\theta_0}{\sqrt{2}} & \frac{\sin^2\theta_0}{2} \\ -\frac{\sin\theta_0\cos\theta_0}{\sqrt{2}} & \sin^2\theta_0 & \frac{\sin\theta_0\cos\theta_0}{\sqrt{2}} \\ \frac{\sin^2\theta_0}{2} & \frac{\sin\theta_0\cos\theta_0}{\sqrt{2}} & \frac{1+\cos^2\theta_0}{2} \end{pmatrix}$ $\bar{\Lambda}_c^ \frac{\frac{\sin^2 \theta_0 \cos 2\phi_0}{2}}{\sqrt{2}}$ $\frac{\frac{\sin \theta_0 \cos \theta_0 \cos 2\phi_0 + i \sin \theta_0 \sin 2\phi_0}{\sqrt{2}}}{(1 + \cos^2 \theta_0) \cos 2\phi_0 + 2i \cos \theta_0 \sin 2\phi_0}$ $\frac{(1+\cos^2\theta_0)\cos 2\phi_0-2i\cos\theta_0\sin 2\phi_0}{2}$ $\frac{\sin\theta_0\cos\theta_0\cos2\phi_0 - i\sin\theta_0\sin2\phi_0}{\sqrt{2}}$ $-\sin\theta_0\cos\theta_0\cos 2\phi_0+i\sin\theta_0\sin 2\phi_0$ $-\sin^2\theta_0\cos 2\phi_0$ $\frac{\sin^2 \theta_0 \cos 2\phi_0}{2}$ $\frac{-\sin\theta_0\cos\theta_0\cos 2\phi_0 - i\sin\theta_0\sin 2\phi_0}{\sqrt{2}}$ $+\frac{1}{4} \begin{pmatrix} \frac{-2(P_{Z}+P_{Z})\cos\theta_{0}+P_{Z}P_{Z}(1+\cos^{2}\theta_{0})}{2} & \frac{(P_{Z}+P_{Z})\sin\theta_{0}-P_{Z}P_{Z}\sin\theta_{0}\cos\theta_{0}}{\sqrt{2}} & \frac{P_{Z}P_{Z}\sin^{2}\theta_{0}}{\sqrt{2}} \\ \frac{P_{Z}P_{Z}\sin^{2}\theta_{0}}{2} & \frac{(P_{Z}+P_{Z})\sin\theta_{0}+P_{Z}P_{Z}\sin^{2}\theta_{0}}{\sqrt{2}} & \frac{(P_{Z}+P_{Z})\sin\theta_{0}+P_{Z}P_{Z}\sin\theta_{0}\cos\theta_{0}}{\sqrt{2}} & \frac{2(P_{Z}+\bar{P}_{Z})\cos\theta_{0}+P_{Z}\bar{P}_{Z}(1+\cos^{2}\theta_{0})}{2} \end{pmatrix}$

For simplicity: $\overline{P}_Z = 0$ and $\overline{P}_T = P_T$

Generation of baryon & anti-baryon on STCF

Based on the spin density matrix, oint density matrix of baryon & anti-baryon pair:	Ref. Phys. Rev. D 110.014035 Phys. Rev. D 105.116022 Phys. Rev. D 99.056008
$(C_{\mu\nu}) = \frac{3}{2(3+\alpha_0)} \begin{pmatrix} 1+\alpha_0 \cos^2 \theta_0 & 0 & \beta_0 \sin \theta_0 \cos \theta_0 & 0\\ 0 & \sin^2 \theta_0 & 0 & \gamma_0 \sin \theta_0 \cos \theta_0\\ -\beta_0 \sin \theta_0 \cos \theta_0 & 0 & \alpha_0 \sin^2 \theta_0 & 0\\ 0 & -\gamma_0 \sin \theta_0 \cos \theta_0 & 0 & -\alpha_0 - \cos^2 \theta_0 \end{pmatrix}$	
$+\frac{3\hat{P}_T^2}{2(3+\alpha_0)} \begin{pmatrix} \alpha_0 \sin^2 \theta_0 \cos 2\phi_0 & -\beta_0 \sin \theta_0 \sin 2\phi_0 & -\beta_0 \sin \theta_0 \cos \theta_0 \cos 2\phi_0 \\ -\beta_0 \sin \theta_0 \sin 2\phi_0 & (\alpha_0 + \cos^2 \theta_0) \cos 2\phi_0 & -(1+\alpha_0) \cos \theta_0 \sin 2\phi_0 \\ \beta_0 \sin \theta_0 \cos \theta_0 \cos 2\phi_0 & (1+\alpha_0) \cos \theta_0 \sin 2\phi_0 & (1+\alpha_0 \cos^2 \theta_0) \cos 2\phi_0 \\ 0 & \gamma_0 \sin \theta_0 \cos \theta_0 \cos 2\phi_0 & -\gamma_0 \sin \theta_0 \sin 2\phi_0 \end{pmatrix}$	$ \begin{array}{c} 0 \\ -\gamma_0 \sin \theta_0 \cos \theta_0 \cos 2\phi_0 \\ -\gamma_0 \sin \theta_0 \sin 2\phi_0 \\ -\sin^2 \theta_0 \cos 2\phi_0 \end{array} \right) $
$+\frac{3\hat{P}_Z}{2(3+\alpha_0)} \begin{pmatrix} 0 & \gamma_0 \sin\theta_0 & 0 & (1+\alpha_0)\cos\theta_0\\ \gamma_0 \sin\theta_0 & 0 & 0 & 0\\ 0 & 0 & 0 & \beta_0\sin\theta_0\\ -(1+\alpha_0)\cos\theta_0 & 0 & \beta_0\sin\theta_0 & 0 \end{pmatrix},$	
$\alpha_{0} \coloneqq (\mathcal{H}_{\frac{1}{2},\frac{1}{2}} - 2\mathcal{H}_{\frac{1}{2},-\frac{1}{2}})/(\mathcal{H}_{\frac{1}{2},\frac{1}{2}} + 2\mathcal{H}_{\frac{1}{2},-\frac{1}{2}})$ $\Delta_{0} \coloneqq \operatorname{Arg}(\mathcal{H}_{\frac{1}{2},-\frac{1}{2}}/\mathcal{H}_{\frac{1}{2},\frac{1}{2}})$ $\alpha_{0} = \sqrt{1 - n^{2} \sin 4} = n - \sqrt{1 - n^{2} \cos 4}$ $You can clearly solve 1$ $(1 - n^{2} \sin 4) = n - \sqrt{1 - n^{2} \cos 4}$ $You can clearly solve 1$ $You ca$	see the contributions from: on; arization; olarization.
July 3, 2025 $\beta_0 = \sqrt{1 - \alpha_0^2 \sin \Delta_0}, \ \gamma_0 = \sqrt{1 - \alpha_0^2 \cos \Delta_0}$	8

Ref. Phys. Rev. D 110.014035 Phys. Rev. D 105.116022 Phys. Rev. D 99.056008

a-matrix: $\Lambda_c^+ / \Sigma^+ / \Lambda$ decay:

$$\begin{pmatrix} 1 & 0 & 0 & \alpha_{BP} \\ \alpha_{BP} \sin \theta_1 \cos \phi_1 & \gamma_{BP} \cos \theta_1 \cos \phi_1 - \beta_{BP} \sin \phi_1 & -\beta_{BP} \cos \theta_1 \cos \phi_1 - \gamma_{BP} \sin \phi_1 & \sin \theta_1 \cos \phi_1 \\ \alpha_{BP} \sin \theta_1 \sin \phi_1 & \beta_{BP} \cos \phi_1 + \gamma_{BP} \cos \theta_1 \sin \phi_1 & \gamma_{BP} \cos \phi_1 - \beta_{BP} \cos \theta_1 \sin \phi_1 & \sin \theta_1 \sin \phi_1 \\ \alpha_{BP} \cos \theta_1 & -\gamma_{BP} \sin \theta_1 & \beta_{BP} \sin \theta_1 & \cos \theta_1 \end{pmatrix}$$

> This matrix is only for $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ + 0^-$

Note:

$$\Sigma^{0} \rightarrow \gamma \Lambda \implies P \text{ conserved}$$

$$a_{0,0}^{\Sigma^{0}} = 1$$

$$a_{1,3}^{\Sigma^{0}} = -\sin \theta_{2} \cos \phi_{2}$$

$$a_{2,3}^{\Sigma^{0}} = -\sin \theta_{2} \sin \phi_{2}$$

$$a_{3,3}^{\Sigma^{0}} = -\cos \theta_{2}$$

$$\begin{aligned} \mathbf{For} \ \mathbf{\Lambda}_{\boldsymbol{c}}^{+} &\to \mathbf{\Lambda}_{\boldsymbol{k}}^{+}: \quad \mathcal{F}^{\Lambda_{\boldsymbol{c}}^{+}}(\boldsymbol{\xi}; \boldsymbol{\omega}) = \frac{1}{(4\pi)^{3}} \sum_{\mu=0}^{3} C_{\mu0} \cdot \sum_{\mu'=0,\mu''=0}^{3} a_{\mu\mu'}^{\Lambda_{\boldsymbol{c}}^{+}} a_{\mu'0}^{\Lambda} \\ \mathbf{For} \ \mathbf{\Lambda}_{\boldsymbol{c}}^{+} &\to \mathbf{\Sigma}^{\mathbf{0}} \mathbf{K}^{+}: \quad \mathcal{F}^{\Lambda_{\boldsymbol{c}}^{+}}(\boldsymbol{\xi}; \boldsymbol{\omega}) = \frac{1}{(4\pi)^{3}} \sum_{\mu=0}^{3} C_{\mu0} \cdot \sum_{\mu'=0,\mu''=0}^{3} a_{\mu\mu'}^{\Lambda_{\boldsymbol{c}}^{+}} a_{\mu'\mu''}^{\Sigma^{\mathbf{0}}} a_{\mu''0}^{\Lambda} \\ \mathbf{For} \ \mathbf{\Lambda}_{\boldsymbol{c}}^{+} &\to \mathbf{\Sigma}^{+} \mathbf{K}_{\boldsymbol{s}}^{\mathbf{0}}: \quad \mathcal{F}^{\Lambda_{\boldsymbol{c}}^{+}}(\boldsymbol{\xi}; \boldsymbol{\omega}) = \frac{1}{(4\pi)^{3}} \sum_{\mu=0}^{3} C_{\mu0} \cdot \sum_{\mu'=0,\mu''=0}^{3} a_{\mu\mu'}^{\Lambda_{\boldsymbol{c}}^{+}} a_{\mu'\mu''}^{\Sigma^{+}} a_{\mu''0}^{\Lambda_{\boldsymbol{c}}^{+}} \end{aligned}$$

All angular distribution formulas can be derived.

Statistical uncertainty of other experiments

Simple scaling using yield (luminosity) based on current statistical uncertainty.

Parameters	LHCb			Belle (II)	
	Nowadays	2030	2041	Nowadays	2043
Luminosity	9 fb^{-1}	50 fb^{-1}	300 fb^{-1}	$980~{\rm fb}^{-1}$	50 ab^{-1}
$\alpha_{\Lambda K^+}$	0.05	0.021	0.009	0.049	0.007
$\Delta_{\Lambda K^+}$	0.103	0.044	0.018	•••	•••
$lpha_{\Sigma^0K^+}$	•••	•••	•••	0.18	0.025
$A_{CP}^{\alpha_{\Lambda K}+}$	0.08	0.034	0.014	0.086	0.012
$A_{CP}^{\alpha_{\Sigma^0 K^+}}$	•••	•••	•••	0.35	0.049

 $\sigma \propto \frac{1}{\sqrt{\mathcal{L}}}$

Estimated method

Simulation	Sa 1. 2.	mpling: Using the A Input param Processes $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ $\Lambda_c^+ \rightarrow \Lambda K^+$ $\bar{\Lambda}_c^- \rightarrow \bar{\Lambda} K^-$ $\Lambda_c^+ \rightarrow \Sigma^0 K^+$ $\bar{\Lambda}_c^- \rightarrow \bar{\Sigma}^0 K^-$ $\Lambda_c^+ \rightarrow \Sigma^+ K_c^0$	Angular DnetersParameters α_0 ($\bar{\alpha}_0$) Δ_0 ($\bar{\Delta}_0$) $\alpha_{\Lambda K^+}$ $\Delta_{\Lambda K^+}$ $\alpha_{\bar{\Lambda}K^-}$ $\Delta_{\bar{\Lambda}K^-}$ $\Delta_{\bar{\Lambda}K^-}$ $\alpha_{\Sigma^0 K^+}$ $\alpha_{\bar{\Sigma}^0 K^-}$ $\Delta_{\bar{\Sigma}^0 K^-}$ $\Delta_{\bar{\Sigma}^0 K^-}$ $\alpha_{\Sigma^+ K_S^0}$	istributi Values 0.10 -0.50 -0.52 2.74 $-\alpha_{\Lambda K^+}$ $-\Delta_{\Lambda K^+}$ -0.52 -0.59 $-\alpha_{\Sigma^0 K^+}$ $-\Delta_{\Sigma^0 K^+}$ -0.52	on Model Sources Estimated Estimated Ref. [a] Ref. [a] CP conservation CP conservation Ref. [b] Ref. [b] CP conservation Ref. [b] Ref. [b] Ref. [b] Ref. [b] Ref. [b] Ref. [b]	Fit: 1. Likelihood fit 2. Fix different beam polarization 3. Give the absolute statistical uncertainty	1 Icertainty
		$\begin{split} \bar{\Lambda}_c^- &\to \bar{\Sigma}^0 K^- \\ \Lambda_c^+ &\to \Sigma^+ K_S^0 \\ \bar{\Lambda}_c^- &\to \bar{\Sigma}^+ K_S^0 \\ \hline{\Lambda}_c^- &\to \bar{\Sigma}^+ K_S^0 \\ \hline{\Lambda}_c^- &\to \bar{p} \pi^- \\ \bar{\Lambda}_c^- &\to \bar{p} \pi^+ \\ \hline{\Sigma}_s^+ &\to p \pi^0 \\ \bar{\Sigma}_s^- &\to \bar{p} \pi^0 \end{split}$	$\begin{array}{c} \alpha_{\bar{\Sigma}^{0}K^{-}} \\ \Delta_{\bar{\Sigma}^{0}K^{-}} \\ \Delta_{\bar{\Sigma}^{0}K^{-}} \\ \alpha_{\Sigma^{+}K^{0}_{S}} \\ \Delta_{\Sigma^{+}K^{0}_{S}} \\ \alpha_{\bar{\Sigma}^{-}K^{0}_{S}} \\ \Delta_{\bar{\Sigma}^{-}K^{0}_{S}} \\ \alpha_{p\pi^{-}} \\ \alpha_{\bar{p}\pi^{+}} \\ \alpha_{p\pi^{0}} \\ \alpha_{\bar{p}\pi^{0}} \\ \alpha_{\bar{p}\pi^{0}} \end{array}$	$\begin{array}{c} -\alpha_{\Sigma^0 K^+} \\ -\Delta_{\Sigma^0 K^+} \\ -0.52 \\ -0.59 \\ -\alpha_{\Sigma^+ K^0_S} \\ -\Delta_{\Sigma^+ K^0_S} \\ 0.747 \\ -0.757 \\ -0.982 \\ 0.990 \end{array}$	CP conservation CP conservation Ref. [b] Ref. [b] CP conservation CP conservation PDG(2024) [c] PDG(2024) [c] PDG(2024) [c]	2. Fix different beam polarization 3. Give the absolute statistical uncertainty	y

[a] Phys.Rev.Lett.133.261804;

[b] Phys.Rev.D.109.L071302;

[c] Phys.Rev.D.110.030001.

Statistical uncertainty estimation for $\alpha_{\Lambda K^+}$

> Longitudinal beam polarization has greater advantages in measuring polarization parameters.

 \blacktriangleright When the longitudinal polarization is 50%, it needs four years to achieve the accuracy of LHCb experiment based on 50 fb⁻¹.

Statistical uncertainty estimation for $\Delta_{\Lambda K^+}$ and $A_{CP}^{\alpha_{\Lambda K^+}}$

- > Using high longitudinal polarization beam, the advantages of STCF is particularly evident.
- \triangleright Especially in $\Delta_{\Lambda K^+}$, measuring β -induced CPV could be possible in the future.
- > But α -induced CPV seems worse than LHCb and Belle II.

Statistical uncertainty estimation for $\alpha_{\Sigma^0 K^+}$, $\Delta_{\Sigma^0 K^+}$, and $A_{CP}^{\Sigma^0 K^+}$

All the parameters studied can achieve overall better accuracy than Belle II on STCF using 4 ab^{-1} data with a large longitudinal polarized beam.

Statistical uncertainty estimation for $\alpha_{\Sigma^+K_S^0}$, $\Delta_{\Sigma^+K_S^0}$, and $A_{CP}^{\Sigma^+K_S^0}$

- ➤ There is no Belle II or LHCb measurement yet.
- > Hard to reach precision of SM prediction $(10^{-4} \sim 10^{-5})$.

Conclusion

- 1. Longitudinal polarization has a greater improvement in precision compared to transverse polarization.
- 2. Large longitudinal polarization is necessary for P and CP violation parameters measurement.
- 3. Polarization parameters Δ have significant precision advantages on STCF!
- 4. Precision of Δ will allow us to explore β -induced CPV.
- 5. There is still a lack of data to test the CPV phenomenon in SM in the exploration of polarization-induced CPV.

Thank you!

backup

2.32

 $\Lambda_c^+ \to \Lambda K^+$

 $\Lambda_c^+\to \Sigma^0 K^+$

July 3, 2025