

Search for CPV in $\Xi(-,0)$ decays in $J/\psi \rightarrow \Xi \overline{\Xi}$ decays

Yue Xu Fudan University

超级陶粲装置研讨会 · 湘潭 2025/06/28

Outline

➢Introduction

- ≻Formalism & MC production
- ≻Event selection
- ► BESIII & STCF comparisons
- ➤Summary

Introduction

- CP violation(CPV) has been observed in K, B, D meson systems and Λ⁰_b baryon system. However, further searches for CPV in other baryon decays remain crucial for discovering additional sources of CPV beyond the Standard Model.
- Measurement of asymmetry parameters of hyperon weak decay can be used to test the CP violation

$$\alpha = \frac{2Re(A_S^* \cdot A_p)}{|A_S|^2 + |A_P|^2} \qquad \qquad \frac{dN}{d\Omega} \propto 1 + \alpha \overrightarrow{P_Y} \cdot \hat{p}_d \qquad \qquad A_{CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} \qquad \qquad (\mathcal{O}^{\Xi} \sim 10^{-5})$$

$$\xrightarrow{Phys.Rev.D \ 67 \ (2003) \ 056001}$$

➤ The multi-step decay chain $e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+$ offers us much more experimental information than Λ decay. And this decay features a multi-particle final state, making it useful for evaluating OSCAR's performance.

Formalism & MC production

Angular distribution:

٠

•

٠

 \triangleright

Phys. Rev. D 99, 056008 (2019)

$$\mathcal{W}(\xi;\omega) = \sum_{\mu,\overline{\nu}=0}^{3} \sum_{\mu'=0}^{3} \sum_{\overline{\nu}'=0}^{3} C_{\mu\overline{\nu}} a_{\mu\mu'}^{\Xi} a_{\mu'0}^{\overline{\Lambda}} a_{\overline{\nu}\nu'}^{\overline{\Xi}} a_{\overline{\nu}\nu'}^{\overline{\Lambda}} a_{\overline{\nu}\nu'}^{\overline{\Sigma}} a_{\overline{$$

publication *Nature 606, 64–69 (2022)*

Event selection

Charged tracks

- $|cos\theta| < 0.93$
- No requirement for vertex
- $N_{\rm poz} \ge 3 \& N_{\rm neg} \ge 3$
- Proton and pion selection:
 - For N_{poz} :
 - p: p > 0.3 GeV/c
 - $\pi^+: p < 0.3 \text{ GeV/c}$
 - For N_{neg} :
 - $\bar{p}: p > 0.3 \text{ GeV/c}$
 - $\pi^-: p < 0.3 \text{ GeV/c}$
- $\succ \Lambda$, Ξ^- reconstruction
 - Loop p and π^- candidates
 - Λ : vertex fit
 - Ξ^- : vertex fit and second vertex fit
 - The best Λ and Ξ^- candidates from combination with minimum

$$\sqrt{\left(m_{p\pi^{-}}-M_{\Lambda}\right)^{2}+\left(m_{p\pi^{-}\pi^{-}}-M_{\Xi}\right)^{2}}$$

- $\succ \overline{\Lambda}, \overline{\Xi}^+$ reconstruction
 - Loop \bar{p} and π^+ candidates
 - $\overline{\Lambda}$: vertex fit
 - $\overline{\Xi}^+$: vertex fit and second vertex fit
 - The best $\overline{\Lambda}$ and $\overline{\Xi}^+$ candidates from combination with

minimum
$$\sqrt{(m_{\bar{p}\pi^+} - M_{\Lambda})^2 + (m_{\bar{p}\pi^+\pi^+} - M_{\Xi})^2}$$

- ➤ 4C kinematic fit
 - Do kinematic fit on $\Xi^- \overline{\Xi}^+$

The selection criteria are the same as BESIII

Cut flow comparison

> No background mix in OSCAR

BESIII	09+12+18+19	09+12+18+19	Re. Eff.(%)	OSCAR	Events	Eff. (%)	Re. Eff.(%)
Signal MC	Events	EII. (%)		Signal MC			
	9,000,000	100.0			200,000	100.0	
Charged tracks	3057857	34.0		Charged tracks	106291	53.1	
$\Lambda \ \Xi^-$ reconstruction	2545353	28.3	83.2	Λ、 Ξ ⁻ reconstruction	85234	42.6	80.2
$\overline{\Lambda}$, $\overline{\Xi}^+$ reconstruction	2092432	23.2	82.2	$\overline{\Lambda}, \overline{\Xi}^+$ reconstruction	68657	34.3	80.6
4C kinematic fit	1724213	19.2	82.4	4C kinematic fit	44617	22.3	65.0

- STCF

BESH

0.5

STOF ~*

0.5 1 cos(θ_π) from Ξ

BESHI

0.5

STCF

 $0.5 \cos(\theta_{\pi})$ from

BESII

0.5

 $\cos(\theta_n)$

-1

-0.5 0 - BESIII

cos(θ,

BESIII

In Truth level: check θ , cos θ , Mom

Mom

In reconstruction level: check θ , cos θ , Mom

Kth STCF

2 3

STCF

2

STCF

BESIII

BESIII

Check χ^2 , L, Lerr, L/Lerr, Mass

1.28 1.29 1.3 1.31 1.32 1.33 1.34 1.35 1.36 M₌- GeV/c²

Check resolution of decay length

Check Helicity angles in truth level:

Check Helicity angles in reconstruction level:

Summary

- ► The process $e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \overline{\Xi}^+$ has been generated using the OSCAR software. And the signal events have been preliminarily selected.
- The signal selection efficiency has improved by ~16% compared to BESIII.
- ➤ The discrepancy between BESIII and STCF:
 - Selection efficiency (charged track)
 - \succ Ξ momentum
 - > Invariant mass of Ξ , Λ
 - > Decay length error of Ξ

Backup

genTool.property("Boost").set(True)

genTool.property("Boost").set(False)

Since e^+e^- isn't a complete head-to-head collision, the cross angle needs to be considered in the simulation, from the CMS boost to the Lab system.

