MATTER – ANTIMATTER IN THE UNIVERSE

Barron CPT at CO

Chia-Wei Liu

Jul 3, 2025

STCF, Hunan

scib.2025.05.045

國科大杭州髙等研究院 Hangzhou Institute for Advanced Study, UCAS

• Charming physics - CP violation

 $a_{CP}(D^0 \to K^+K^-) - a_{CP}(D^0 \to \pi^+\pi^-) = (-1.54 \pm 0.29) \times 10^{-3}$ $a_{CP}^{KK} = (7.7 \pm 5.7) \times 10^{-4}, \quad a_{CP}^{\pi\pi} = (23.2 \pm 6.1) \times 10^{-4}$

Short distance predictions are **an order smaller**! \bullet Data driven approach:

> Factorization with fitted hadron matrix element. PRD 86, 036012 (2012).

> Use the relations of final state interactions; $P^{LD} = E$. PRD 86, 014014 (2012); PRD 109, 073008 (2024). Consider the re-scattering of $\pi\pi \to KK$. PRL 131, 051802 (2023).

• SM *naively* predicts $a_{CP}^{\pi\pi} = -a_{CP}^{KK}$ but data found opposite!

PRL 122, 211803 (2019); PRL 131, 091802 (2023)

Charming physics - CP violation

Reasons to go **beyond** charmed mesons:

 $a_{CP}^{KK} = (7.7 \pm 5.7) \times 10^{-4}, \quad a_{CP}^{\pi\pi} = (23.2 \pm 6.1) \times 10^{-4}$

PHYSICAL REVIEW D 81, 074021 (2010) **Two-body hadronic charmed meson decays**

Hai-Yang Cheng^{1,2} and Cheng-Wei Chiang^{1,3}

1. f_0 might be a glueball which mainly decays to kaons. Leading order amplitude $\propto m_{\rm s}$.

- 2. Its mass is too close to D meson, enhancing SU(3) breaking effects from mass splitting.
- 3. Unlike $D^0 \rightarrow h^+h^-$, CP-even phase shifts in baryon decays can be directly measured. PRD 86, 036012 (2012); PRD 86, 014014 (2012); For *D* CPV see:

Enhancement of charm CP violation due to nearby resonances Stefan Schacht^{a,*}, Amarjit Soni^b PLB 825, 136855 (2022)

```
PRD 109, 073008 (2024); PRL 131, 051802 (2023).
```


Experimental status of charmed baryon decays

Sci. Bull. 68, 583-592 (2023)

PRL 132, 031801 (2024)

PRL 133, 261804 (2024)

• SU(3) flavor perspective of charmed baryon decays

By far, the only *reliable* (?) way is the $SU(3)_F$ symmetry.

There are some **shortcomings** in $SU(3)_F$ symmetry approach.

PRD 93, 056008 (2016), NPB 956, 115048 (2020) JHEP 09, 035 (2022), JHEP 03, 143 (2022) ...

Theory (2023)	Data (2024)	
-0.40 ± 0.49	-0.744 ± 0.015	
1.6 ± 0.2	1.79 ± 0.41	Bes
1.97 ± 0.38	1.73 ± 0.28	Bee
2.94 ± 0.97	1.6 ± 0.5	BEI
5.66 ± 0.93	1.2 ± 0.4	

5Ш

cb Cp

• SU(3) flavor perspective of charmed baryon decays

• SU(3) flavor perspective of charmed baryon decays The large χ^2 is mainly contributed by two channels: PDG $10^2 \mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+) \qquad 1.43 \pm 0.32$ 2.72 ± 0.09 $10^2 \mathscr{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) \qquad 2.9 \pm 1.3$ 6.82 ± 0.36 Both of them are the normalized channels in $\Xi_c^{0,+}$, indicating an possible underestimation of factor two in the experimental side. Same underestimations occurs in Ξ_c^0 – PDG $10^2 \mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = \frac{1.05 \pm 0.20}{2.12 \pm 0.13^*}$ 1.02 ± 0.21 $10^2 \mathscr{B}(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu)$ $2.05 \pm 0.19*$ *Using $\mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+) = (2.9 \pm 0.1)\%$

- [2506.19005] $SU(3)_F$ conserved $SU(3)_F$ broken 2.9 ± 0.1 6.0 ± 0.4

$\rightarrow \Xi^- \ell^+ \nu_\ell.$		
$SU(3)_F$	Lattice	Lattice
4.10 ± 0.46	2.38 ± 0.44	3.58 ± 0.12
3.98 ± 0.57	2.29 ± 0.42	3.47 ± 0.12
[2110.04179]	[2103.07064]	[2504.07302]

• SU(3) flavor perspective of charmed baryon decays

4 parameters 3 parameters Amplitude : $V_{cs}V_{us}^* F^{s-d} + V_{cb}V_{ub}^* F^b$

Do not need to consider F^b in studying CP-even quantities.

CKM triangle for $b \rightarrow d$

 F^b cannot be determined with CP-even quantities.

Rescattering, solving penguin/tree

Induce two parameters:

 F_V^{\pm} , including effective color

number and form factors.

Described by 4 complex parameters, having the same number of parameters with the $SU(3)_F$ analysis !

• Rescattering, numerical results

The sizes of CP violation are of the order $\mathcal{O}(10^{-4})$, in accordance with naive expectations.

	12 (1 2 3)		110
Channels	$B(10^{-3})$	$A_{CP}(10^{-3})$	$\alpha_{CP}(10^{-}$
$\Lambda_c^+ \to \Sigma^+ K_S$	0.37(3)	0.29(3)	-0.22(
$\Lambda_c^+ \to \Sigma^0 K^+$	0.37(3)	0.29(3)	-0.22(
$\Lambda_c^+ \to p\pi^0$	0.20(3)	0.97(28)	0.99(1
$\Lambda_c^+ \to n\pi^+$	0.72(7)	-0.21(13)	-0.43(1
$\Lambda_c^+ \to \Lambda^0 K^+$	0.66(3)	-0.42(12)	0.29(
$\Xi_c^+ \to \Sigma^+ \pi^0$	2.34(13)	0.45(6)	-0.02(1
$\Xi_c^+ \to \Sigma^0 \pi^+$	2.34(18)	0.28(6)	-0.38(1
$\Xi_c^+ \to \Xi^0 K^+$	1.20(18)	1.11(17)	-0.08(2
$\Xi_c^+ \to p K_S$	1.61(9)	-0.23(2)	0.19(
$\Xi_c^+ \to \Lambda^0 \pi^+$	0.95(12)	-0.35(5)	0.22(

Large CP violation is found ! $A_{CP} = \frac{\Gamma}{\Gamma}$

$$\frac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}}, \quad \alpha_{CP} = \frac{1}{2} \left(\alpha + \overline{\alpha} \right).$$

Rescattering, numerical results

- In the U-spin limit, we have that • A_{CP} in the same size with the ones in D meson! $A_{CP}(\Xi_c^0 \to \Sigma^+ \pi^-) = (1.78 \pm 0.25) \times 10^{-3}$
 - $A_{CP}(\Xi_c^0 \to pK^-) = (-1.50 \pm 0.25) \times 10^{-3}$

$$A_{CP}\left(\Xi_c^0 \to \Sigma^+ \pi^-\right) = -A_{CP}\left(\Xi_c^0 \to pK^-\right).$$

EPJC 79, 429 (2019)

• Timelike EDM

• The decay distributions are obtained by squaring the amplitudes:

Polarization fraction

$$\frac{\partial \Gamma}{\partial \vec{\Omega}} = \sum_{e} P_{e} \left| e_{\mu} \, \vec{u} \left(\gamma^{\mu} F_{V} + \frac{i}{2m} \sigma^{\mu q} H_{\sigma} + \gamma^{\mu} \gamma^{5} F_{A} + \sigma^{\mu q} \gamma^{5} H_{T} \right) v \right|^{2} e^{-(\vec{p})} \qquad \tau^{+(-\vec{p})}$$

$$\propto 1 + \vec{B}_{+} \cdot (\vec{s}_{-} + \vec{s}_{+}) + \vec{B}_{-} \cdot (\vec{s}_{-} - \vec{s}_{+}) + \vec{s}_{+} \cdot \vec{C} \cdot \vec{s}_{-}$$

$$\vec{B}_{-}(\vec{p}, \vec{k}) = \left(b_{p} \hat{p} + b_{k} \hat{k} \right) \operatorname{Im}(H_{T})$$

$$C^{ij}(\vec{p}, \vec{k}) = \underbrace{\delta^{ij} c_{0} \cdots}_{CP\text{-even}} + \underbrace{\epsilon^{ijk} \left(\hat{p}^{k} c_{1} + \hat{k}^{k} c_{2} \right)}_{CP\text{-odd}} \operatorname{Re}(H_{T}) \qquad \tau^{-(\vec{k}, \vec{s}_{-})} e^{+(-\vec{p})}$$

$$\frac{\partial \Gamma}{\partial \vec{\Omega}} = \sum_{e} P_{e} \left| e_{\mu} \, \bar{u} \left(\gamma^{\mu} F_{V} + \frac{i}{2m} \sigma^{\mu q} H_{\sigma} + \gamma^{\mu} \gamma^{5} F_{A} + \sigma^{\mu q} \gamma^{5} H_{T} \right) v \right|^{2} e^{-(\vec{p})} \qquad \tau^{+(-,\vec{p})}$$

$$\propto 1 + \vec{B}_{+} \cdot (\vec{s}_{-} + \vec{s}_{+}) + \vec{B}_{-} \cdot (\vec{s}_{-} - \vec{s}_{+}) + \vec{s}_{+} \cdot \vec{C} \cdot \vec{s}_{-}$$

$$\vec{B}_{-}(\vec{p}, \vec{k}) = \left(b_{p} \hat{p} + b_{k} \hat{k} \right) \operatorname{Im}(H_{T})$$

$$C^{ij}(\vec{p}, \vec{k}) = \delta^{ij} c_{0} \cdots + \frac{e^{ijk} \left(\hat{p}^{k} c_{1} + \hat{k}^{k} c_{2} \right)}{\operatorname{CP-odd}} \operatorname{Re}(H_{T}) \qquad \tau^{-(\vec{k}, \vec{s}_{-})} e^{+(-,\vec{k})}$$

• N

• 0

Timelike EDMPolarization fraction of
$$\tau^-$$
Polarization fraction of τ^- Polarization fraction of τ^- Polarization fraction of τ^- No need for simultaneous detection
of $\tau^- \to \pi^- \nu_\tau$ and $\tau^+ \to \pi^+ \overline{\nu}_\tau$.Re $(d_\tau) = e \frac{9}{4} \frac{s + 2m_\tau^2}{m_\tau \sqrt{s^2 - 4sm_\tau^2}} \left\langle \left(\hat{p}_{\pi^-} \times \hat{p}_{\pi^+} \right) \cdot \hat{k} \right\rangle$ Need for simultaneous detection
of $\tau^- \to \pi^- \nu_\tau$ and $\tau^+ \to \pi^+ \overline{\nu}_\tau$.Re $(d_\tau) = e \frac{9}{4} \frac{s + 2m_\tau^2}{m_\tau \sqrt{s^2 - 4sm_\tau^2}} \left\langle \left(\hat{p}_{\pi^-} \times \hat{p}_{\pi^+} \right) \cdot \hat{k} \right\rangle$ Need for simultaneous detection
of $\tau^- \to \pi^- \nu_\tau$ and $\tau^+ \to \pi^+ \overline{\nu}_\tau$.Re (d_τ) No need detection of $\hat{k}!$ No need detection of \hat{k}

• It

We urge the addition of silicon pixel detectors at STCF to filter fast decay events.

$$P_{\tau} = 1 - \left(\int_{0}^{D/D_{0}} \exp(-x) dx \right)^{2}$$
Probability of being detected
Probability of *not* being detected

- D: the detector resolution
- D_0 : the average flight distance.
- We have to sacrifice some statistics when k cannot be detected.
- P = 2%, nearly impossible to probe $\operatorname{Re}(d_{\tau})$ @ **BESIII** but excellent at **SCTF**.

$\sigma_{xy} = 130 \ \mu m \longrightarrow 30 \ \mu m$

- $\sigma_{xy} = 130 \ \mu \text{m} \longrightarrow 30 \ \mu \text{m}$
- We urge the addition of silicon pixel detectors at STCF to filter fast decay events.

\sqrt{s}	$m_{\psi(2S)}$	$5.6 \mathrm{GeV}$	$6.3 \mathrm{GeV}$
$\delta_{ m Im}$	1.8	0.7	0.7
$\delta_{ m Re}(180)$	235	4.9	4.2
$\delta_{ m Re}(130)$	83	4.0	3.6
$\delta_{ m Re}(80)$	29	3.3	3.1
$\delta_{ m Re}(30)$	11	2.9	2.8

Table. Precision of d_{τ} with D = 180, 130...

- sweet spot $@\sqrt{s} = 6.3$ GeV, pushing the upper bound to 10^{-18} ecm.
- See the next speaker for more details on τ EDM.

EDM experiments

- τ and hyperons have short lifetimes. Traditional EDM measurement techniques are not feasible.
- Can be probed directly at colliders.
- May induce electron/nucleons EDM.

$$\left(\frac{d_n}{d_\Lambda}\right)^{-1} = (2.7 \pm 1.6) \times 10^{-3},$$

* assuming $\overline{\theta}, d_u, d_d = 0$.

Particle	\mathbf{Method}	Upper limit	Particle	Method	Upper limit
e^-	Ion trap	$4.1 \times 10^{-30} \ e{\cdot} \mathrm{cm}$	neutron	Hg^*	$1.4 \times 10^{-26} \ e{\cdot} \mathrm{cm}$
μ^-	(g-2) storage ring	$1.5 \times 10^{-19} \ e{\cdot}\mathrm{cm}$	proton	Hg^*	$1.7 \times 10^{-25} \ e{\cdot} \mathrm{cm}$
$ au^-$	From eEDM	$4.1 \times 10^{-19} \ e{\cdot}\mathrm{cm}$	Λ	From nEDM	$2 \times 10^{-22} \ e{\cdot} \mathrm{cm}$
$ au^-$	e^+e^- colliders	$1.9 \times 10^{-17} \ e{\cdot} \mathrm{cm}$	Λ	e^+e^- colliders	$5.5 \times 10^{-19} \ e{\cdot} \mathrm{cm}$

18

State-of-the-art upper limits of $|d_f|$ at 90% confidence level

EDM numerical results

EDM numerical results

- for EDM to be absent in light fermions.

• EDM numerical results

- for EDM to be absent in light fermions.

• EDM numerical results

• EDM numerical results

- Axion light particles enhance imaginary parts of EDM.
- The couplings are proportional to m_f . EDMs are enhanced at $m_a \sim m_f \sim \sqrt{s}$, providing natural reasons for EDM to be absent in light fermions.

- Real part diverge! Only leading log is trustworthy.
- The chiral **enhancements** in electrons and muons are not found here.

• The Store Facility will improve sensitivity to the hyperon and τ EDM by a **factor** of **ten**, significantly enhancing tests of the Standard Model and searches for NP.

Λ

Fu, Li, Wang, Yu, Zhang, [2307.04364]

violation	$\operatorname{Im}(d_B) (\times 10^{-18} e \mathrm{cm})$		$\operatorname{Re}(d_B) (\times 10^{-1})$	
violation	BESIII	STCF	BESIII	STC
$(\epsilon = 0.4)$	2.62	0.14	8.64	0.4
$(\epsilon = 0.2)$	1.47	0.08	18.4	1.0
$(\epsilon = 0.2)$	6.12	0.33	82.6	4.4
$(\epsilon = 0.2)$	6.79	0.37	95.9	5.2

Ξ

With $10^{10} J/\psi$, Du², He, Ma, [2405.09625]

Backup slides

242 Events -SPECTROMETER 201 ET August run. normal current October run, -10% current 60 EVENTS/25 Mey 50 $\frac{1}{5} = \frac{1}{2.75} = \frac{1}{3.0}$ $m_e^* e^{-1} [GeV]$ 3.25 3.5

• SU(3) flavor perspective of charmed baryon decays

The $SU(3)_F$ is an approximate symmetry with errors in 10^{-1} .

There exhibits Z_2 ambiguities:

$$\Gamma \propto |F^2| + \kappa^2 |G^2|, \quad \alpha = \frac{2\kappa \operatorname{Re}(F^*G)}{|F^2| + \kappa^2 |G^2|}$$

In general, the amplitudes cannot be fully reconstructed without β and γ as input.

Precise β and γ data can break the ambiguities, highlighting the importance of $KHC\delta$

Nevertheless, there are *still* a few **ambiguities**.

 Γ and α are invariant under $(F, G) \to (F^*, G^*)$ and $F \leftrightarrow \kappa G^*$ but β and γ flip signs.

Measurement of Λ_b^0 , Λ_c^+ , and Λ Decay Parameters Using $\Lambda_b^0 \to \Lambda_c^+ h^-$ Decays PRL 133, 261804 (2024)

• Rescattering, solving penguin/tree

Amplitudes : $\frac{\lambda_s - \lambda_d}{2} F^{s-d} + \lambda_b F^b$

$$\tilde{f}^b = \tilde{F}_V^- + \tilde{S}^- - \sum_{\lambda=\pm} (2r_\lambda^2 - r_\lambda)\tilde{T}_\lambda^-,$$

$$\tilde{f}^c = r_- \tilde{S}^- - \sum_{\lambda=\pm} (r_\lambda^2 - 2r_\lambda + 3)\tilde{T}_\lambda^-,$$

$$\tilde{f}^d = \tilde{F}_V^- - \sum_{\lambda=\pm} (2r_\lambda^2 - 2r_\lambda - 4)\tilde{T}_\lambda^-, \quad \tilde{f}^e = \tilde{F}_V^+,$$

$$\tilde{f}_{\mathbf{3}}^{b} = \frac{7r_{-}-2}{8+2r_{-}}\tilde{S}^{-} - \sum_{\lambda=\pm} (r_{\lambda}^{2} - 5r_{\lambda}/2 + 1)\tilde{T}_{\lambda}^{-},$$

$$\begin{split} \tilde{f}_{\mathbf{3}}^{c} &= \frac{(r_{-}+1)(2-7r_{-})}{24+6r_{-}}\tilde{S}^{-} + \sum_{\lambda=\pm} \frac{1}{6}(r_{\lambda}^{2}+11r_{\lambda}+1)\tilde{T}_{\lambda}^{-}, \\ \tilde{f}_{\mathbf{3}}^{d} &= \frac{r_{-}(7r_{-}-2)}{8+2r_{-}}\tilde{S}^{-} - \sum_{\lambda=\pm} \frac{1}{2}(r_{\lambda}+1)^{2}\tilde{T}_{\lambda}^{-} - \frac{1}{4}\left(\tilde{F}_{V}^{+}+2\tilde{F}_{V}^{-}\right) \left(1 + \frac{(3C_{4}+C_{3})m_{c} - \frac{2m_{K}^{2}}{m_{s}+m_{u}}(3C_{6}+C_{5})}{(C_{+}+C_{-})m_{c}}\right) \\ \tilde{f}_{\mathbf{5}}^{b}, \tilde{f}_{\mathbf{5}}^{c}, \tilde{f}^{d}, \tilde{f}^{e}) \longleftrightarrow \left(\tilde{F}_{V}^{+}, \tilde{F}_{V}^{-}, \tilde{S}^{-}, \tilde{T}^{-}\right) \longrightarrow \left(\tilde{f}_{\mathbf{3}}^{b}, \tilde{f}_{\mathbf{3}}^{c}, \tilde{f}_{\mathbf{3}}^{d}\right) \\ \frac{27}{PRD 100, 093002 (2019)} \end{split}$$

$$\begin{aligned} \text{Much more complicated compared} \text{to } P^{LD} = E \text{ in } D \text{ mesons } ! \end{split}$$

$$\begin{split} \tilde{f}_{3}^{c} &= \frac{(r_{-}+1)(2-(r_{-}))}{24+6r_{-}}\tilde{S}^{-} + \sum_{\lambda=\pm} \frac{1}{6}(r_{\lambda}^{2}+11r_{\lambda}+1)\tilde{T}_{\lambda}^{-}, \\ \tilde{f}_{3}^{d} &= \frac{r_{-}(7r_{-}-2)}{8+2r_{-}}\tilde{S}^{-} - \sum_{\lambda=\pm} \frac{1}{2}(r_{\lambda}+1)^{2}\tilde{T}_{\lambda}^{-} - \frac{1}{4}\left(\tilde{F}_{V}^{+}+2\tilde{F}_{V}^{-}\right) \left(1 + \frac{(3C_{4}+C_{3})m_{c} - \frac{2m_{k}^{2}}{m_{s}+m_{u}}(3C_{6}+C_{5})}{(C_{+}+C_{-})m_{c}}\right) \\ \tilde{f}_{0}^{b}, \tilde{f}_{0}^{c}, \tilde{f}_{0}^{d}, \tilde{f}_{0}^{e}) \longleftrightarrow \left(\tilde{F}_{V}^{+}, \tilde{F}_{V}^{-}, \tilde{S}^{-}, \tilde{T}^{-}\right) \longrightarrow \left(\tilde{f}_{3}^{b}, \tilde{f}_{3}^{c}, \tilde{f}_{3}^{d}\right) \\ \frac{27}{27} \end{split} \\ \text{PRD 100, 093002 (2019)} \begin{array}{c} \text{Much more complition of } P^{LD} = E \text{ in } P^{$$

$$\begin{split} \tilde{f}_{3}^{c} &= \frac{(r_{-}+1)(2-1r_{-})}{24+6r_{-}}\tilde{S}^{-} + \sum_{\lambda=\pm} \frac{1}{6}(r_{\lambda}^{2}+11r_{\lambda}+1)\tilde{T}_{\lambda}^{-}, \\ \tilde{f}_{3}^{d} &= \frac{r_{-}(7r_{-}-2)}{8+2r_{-}}\tilde{S}^{-} - \sum_{\lambda=\pm} \frac{1}{2}(r_{\lambda}+1)^{2}\tilde{T}_{\lambda}^{-} - \frac{1}{4}\left(\tilde{F}_{V}^{+}+2\tilde{F}_{V}^{-}\right) \left(1 + \frac{(3C_{4}+C_{3})m_{c} - \frac{2m_{k}^{2}}{m_{s}+m_{u}}(3C_{6}+C_{5})}{(C_{+}+C_{-})m_{c}}\right) \\ \left(\tilde{f}^{b}, \tilde{f}^{c}, \tilde{f}^{d}, \tilde{f}^{e}\right) \longleftrightarrow \left(\tilde{F}_{V}^{+}, \tilde{F}_{V}^{-}, \tilde{S}^{-}, \tilde{T}^{-}\right) \longrightarrow \left(\tilde{f}_{3}^{b}, \tilde{f}_{3}^{c}, \tilde{f}_{3}^{d}\right) \end{split}^{27} \end{split}$$

$$PRD 100, 093002 (2019)$$

$$\begin{aligned} Much more compliant to P^{LD} = E \text{ in } D^{2} \\ \frac{1}{2} + \frac{1}$$

D mesons !

Rescattering, solving penguin/tree

Amplitudes : $\frac{\lambda_{s} - \lambda_{d}}{\gamma} \tilde{f}^{b,c,d,e} + \lambda_{b} \tilde{f}^{b,c,d}_{3}$ $\tilde{f}^b = \tilde{F}_V^- - (r_- + 4)\tilde{S}^- + \sum (2r_\lambda^2 - r_\lambda)\tilde{T}_\lambda^-,$ $\tilde{f}^c = -r_-(r_-+4)\tilde{S}^- + \sum (r_\lambda^2 - 2r_\lambda + 3)\tilde{T}_\lambda^-,$ $\tilde{f}^d = \tilde{F}_V^- + \sum (2r_\lambda^2 - 2r_\lambda - 4)\tilde{T}_\lambda^-, \quad \tilde{f}^e = \tilde{F}_V^+$ $\tilde{f}_{\mathbf{3}}^{b} = (1 - \frac{7r_{-}}{2})\tilde{S}^{-} + \sum_{\lambda} (r_{\lambda}^{2} - 5r_{\lambda}/2 + 1)\tilde{T}_{\lambda}^{-},$ $\tilde{f}_{\mathbf{3}}^{c} = \frac{(r_{-}+1)(7r_{-}-2)}{6}\tilde{S}^{-} - \sum_{i}\frac{r_{\lambda}^{2}+11r_{\lambda}+1}{6}\tilde{T}_{\lambda}^{-},$ $\tilde{f}_{\mathbf{3}}^{d} = \frac{2r_{-} - 7r_{-}^{2}}{2}\tilde{S}^{-} + \sum_{\lambda = \pm} \frac{(r_{\lambda} + 1)^{2}}{2}\tilde{T}_{\lambda}^{-} - \frac{\tilde{F}_{V}^{+} + 2\tilde{F}_{V}^{-}}{4}.$ $(\tilde{f}^b, \tilde{f}^c, \tilde{f}^d, \tilde{f}^e) \longleftrightarrow (\tilde{F}_V^+, \tilde{F}_V^-, \tilde{S}^-, \tilde{T}^-) \longrightarrow (\tilde{f}^b_3, \tilde{f}^c_3, \tilde{f}^d_3)$

28

PRD 100, 093002 (2019)

Much more complicated compared to $P^{LD} = E$ in **D** mesons !

• Rescattering, solving penguin/tree

