Mechanisms of proton irradiation-induced defects on the electrical performance of 4H-SiC PIN detectors

Zaiyi Li¹, Xiyuan Zhang¹, Haolan Qu², Jiaxiang Chen³, Peilian Liu¹, Xinbo Zou², Hai Lu⁴ and Xin Shi¹

1.Institue of High Energy Physics, Chinese Academy of Sciences 2.School of Information Science and Technology (SIST), ShanghaiTech University 3.Shenzhen Pinghu Laboratory 4.School of Electronic Science and Engineering, Nanjing University

Saturated electron drift velocity [cm/s]	$0.8 \cdot 10^{7}$	$2 \cdot 10^{7}$
Thermal conductivity [W/Kcm]	1.5	4.9

NJU-PIN-6	5×5	0
NJU-PIN-7	5×5	$3.9 imes 10^{13}$
NJU-PIN-8	5×5	$2.3 imes 10^{14}$
NJU-PIN-9	5×5	$7.8 imes 10^{14}$

 1.5×1.5

NJU-PIN-5

 1×10^{14}

Defect characterization was conducted on the 1.5×1.5 mm² devices. The leakage current decreases after irradiation.

The irradiated devices gradually lose typical C-V characteristics of a pn-junction, which is attributed to compensation effect.

Characterization

Defect

Deep-level Transient Spectroscopy (DLTS): The EH_3 defect is uniquely observed in the irradiated sample.

Time-resolved Photoluminescence (TRPL): Measured hole lifetime decreases after irradiation.

Simulated C-V agrees with 5×5 mm² devices' data. Simulation software: https://raser.team/ Parameters are recalibrated in the G-R term. Simulated I-V agrees with $5 \times 5 \text{ mm}^2$ devices' data.

The change of electric field distribution inside the diodes is the main cause of the changes in I-V and C-V characteristics.

The Deep Level Compensation model (DLCM) proposed in this work can be utilized to design radiation-hardened 4H-SiC devices.

Full paper link: https://arxiv.org/abs/2503.09016

