

基于RASER的碳化硅探测器 性能与应用研究

肖素玉 on behalf of RASER Team 2025年4月18日 西安

第五届半导体辐射探测器研讨会

- 碳化硅探测器应用中的模拟需求
- RASER功能与优势
- RASER仿真碳化硅探测器的应用
 - 基本电学性能仿真
 - 束流监测上的应用仿真
 - 辐照损伤研究
- 总结与展望

探测器结构-电子学输出全链条仿真模拟

需要建立探测器结构设计与工艺仿真、电荷传输与信号生成、电子学电路仿真与优化以及全链条整合与验证

应用场景中多变量耦合仿真模拟

建立温度、辐照能量、剂量率、时间、粒子种类等多变量因素的耦合方法

3 仿真结果的可靠性验证

通过设计实验,根据实验结果对仿真模型进行反馈修正和迭代,确保模拟结果的准确性和可靠性

•现在国际上已有的模拟软件TCAD、Geant4、Allpix2, Garfield、Ngspice等能实现特定过程的仿真,但没有一款软件能实现全过程的模拟

模拟软件名称	核心领域	关键特点与优势
TCAD	半导体器件与工艺	支持全流程工艺仿真(离子注入、氧化、刻蚀等),结合 Sentaurus Interconnect 实现后端互连建模。
Geant4	粒子物理与辐射	开源蒙特卡罗框架,精确模拟粒子输运与物质相互作用,支持复杂几何建模和 跨平台开发。广泛应用于高能物理、医学成像和空间科学。
Allpix2	探测器设计	模块化架构整合 Geant4 粒子模拟与 TCAD 电场数据,支持混合像素探测器(如 Medipix2/Timepix)的单光子计数和能量分辨。适用于加速器实验与探测器优化。
Garfield	电荷传输仿真	专注气体 / 半导体探测器电荷漂移与扩散建模,与 Geant4 协同优化 TPC 空间 分辨率。支持自定义物理模型,适用于核物理与天体粒子实验。
Ngspice	电路系统仿真	开源混合信号模拟器,兼容 Spice 模型,支持模拟 / 数字电路协同设计。跨平台 支持(Windows/Linux),社区资源丰富,适合教育与工业级验证。

- 感应电流估算:
 - $I(t) = -q\vec{v}(\vec{r}(t)) \cdot \vec{E}_{w}(\vec{r}(t))$

电场与加权场: DEVSIM求解电场与加权场 模拟粒子入射路径与沉积能量分布: GEANT4 电子学模拟: 电流灵敏放大器模型、NGSpice 辐照模型构建、优化

• 软件开发基于Python,对初学者友好

探测器器件 初始化模块 器件电场计 电荷载流子 算模块 沉积模块 辐照模块 载流子传播 模块 电子学读出 模块

RASER仿真通过各子模块构成与功能

• 架构完整,本科生、研究生同学都可以参与开发,团队持续维护

RASER仿真碳化硅探测器的应用

基本电学性能仿真

• 实现SiC LGAD增益层的引入

SICAR剖面图(左)与CV曲线(右)

- 在SiC探测器中引入LGAD技术(SICAR),实现载流子的雪崩倍 增,有效放大信号,提高探测器的信噪比和信号质量
- N+增益层在信号放大过程中起关键作用, 1.4e17cm-3, 1um
- 电子束蒸发实现衬底上的金属接触,通过优化金属厚度与退火温 度,达到最佳性能

10.1109/TNS.2024.3471863

相邻两个电极条的时间信息,均差于直接电极入射的9.0±1.6ps

设计微条读出,采取375nm激光扫描研究探测器的时间、位置分辨。电极采取特殊处理,石墨烯材料与金属材料共同构成电极,保证激光的穿透的同时方便打线

束流监测上的应用仿真

- 在CSNS-II工程1.6GeV质子束线上,3个探测器分别放置
 在束晕位置,通过对束晕处束流粒子的直接测量,实现
 对束流位置、强度的估计
- 测量精度控制在1%以内 10.1007/s41605-024-00487-4

- 在CEPC对撞中心下游,通过对二次粒子个数的探测,估 算中心位置的束流强度L
- 分析二次粒子γ、e的位置分布,发现事例集中在下游 23cm处,将此处设置为探测器的放置的中心位置
- 当亮度降低时,信号数量与峰值会同时下降,对时间窗 内所有信号做累加,Total sample current与亮度呈现较好 的线性关系,满足测试需求

RASER仿真碳化硅探测器的应用

辐照损伤研究

未辐照与2e11等效中子剂量辐照下DLTS(深能级瞬态谱)结果

考虑深能级缺陷模型后对辐照探测器CV曲线的仿真

- •利用DLTS分析辐照后SiC的缺陷种类以及浓度,发现EH3缺陷在辐照后显著增加,是影响探测器性能的主要因素
- 通过对常量g的估算,在RASER中引入深能级补偿模型(DLCM),CV曲线验证了模型的合理性

RASER仿真碳化硅探测器的应用

辐照损伤研究

时间分辨光致发光(TRPL)测量辐照前后载流子寿命

深能级补偿模型下辐照前后探测器的IV仿真

- 考虑隧道效应、载流子寿命与辐照剂量的关系、载流子浓度的调整,成功仿真了SiC探测器 辐照前后的IV特性
- DLCM模型满足对SiC器件辐照前后性能的仿真需求,对评估抗辐照器件具有重要意义

- 开发团队利用RASER仿真软件,实现了探测器结构、电场求解、信号产生与传输、电子学等关键步骤的仿真,并结合对辐照损伤的研究,加深对辐照的理解,使模拟辐照环境下探测器的长期使用成为可能
- 除了碳化硅材料,RASER也完成了对硅探测器、闪烁体等的仿真工作,实现了扩散法估算 硅LGAD电场、优化HPTM辐照模型等研究

10.1016/j.nima.2024.169479

• 开发团队与CERN DRD3保持良好沟通,在辐照损伤表征、模拟、宽禁带半导体材料研发等方面均有合作

- 1. WG1 Monolithic silicon technologies
- 2. WG2 Hybrid silicon technologies
- 3. WG3 Radiation damage characterization and sensor operation at extreme fluences
- 4. WG4 Simulations
- 5. WG5 Characterization techniques, facilities
- 6. WG6 Wide band-gap and innovative sensor materials
- 7. WG7 Interconnections and device fabrication
- 8. WG8 Dissemination and outreach

CERN DRD3 Work Group工作重点

DRD3-ESPP-2024

DRD3 collaboration

December 2024

General Strategic Recommendations (GSR)

Input to EDP ESPP(European Strategy for Particle Physics)

GSR 3 - Detector Monte Carlo simulation packages which takes part also in the framework of DRD3 (AllPix2, Garfield++, RASER, KDetSim) are constantly improved to address the needs of each specific technology. The same is true for TB reconstruction software.

		WG4 research goals <2027
		Description
	RG 4.1	Flexible CMOS simulation adaptable to different tech- nology nodes and development of connections between tools for device-level simulation and electronic circuit de- sign/validation
	RG 4.2	Implementation of newly measured semiconductor proper- ties into TCAD and MC simulations tools
	RG 4.3	Definition of benchmark for validating the radiation damage models with measurements and different benchmark models.
	RG 4.4	Developing of bulk and surface model for 10^{16} cm ⁻² $< \Phi_{eq} < 10^{17}$ cm ⁻²
	RG 4.5	Collate solutions from different MC tools and develop an algorithm to include adaptive electric and weighting fields

• 每年组织RASER Workshop面向感兴趣的学者,目标是通过为期3天左右的培训,实现某个

- 9:20 PM → 9:50 PM Hand-On Practice
- 今年预计在7月14日起进行3天晚上的线上培训,紧扣DRD3工作组的部分方向,欢迎感兴趣的老师、同学加入!

https://indico.ihep.ac.cn/event/25833/

