

中國科學院為能物記為完備 Institute of High Energy Physics Chinese Academy of Sciences

Laboratoire de Physique des 2 Infinis

基于4H-SiC的CEPC快速 亮度探测器的设计与仿真

李雁鹏 李萌 王星睿 张希媛 王聪聪 史欣 宋维民 石澔玙 王逗 Philip Bambade

2025.04.18 陕西•西安

第五届半导体辐射探测器研讨会

- CEPC与快速亮度反馈系统
- 4H-SiC探测器简介
- 探测器位置与面积优化
- 信号响应
- 总结与未来计划

CEPC与快速亮度反馈系统

- 电子-正电子"希格斯工厂"
- 四种运行模式: Higgs, Z, W, tt

Operation mode Parameter Н W Ζ tĪ Colliding particles e⁺, e⁻ Center-of-mass energy 240 91 160 360 (GeV) Luminosity 5 115 16 0.5 $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$ No. of interaction points 2

 Table 1.3: Primary CEPC design objectives (@ 30 MW)

Table 1.4: Primary CEPC design objectives (@ 50 MW)

Doromotor	Operation mode			
Farameter	Н	Z	W	tī
Colliding particles	e ⁺ , e ⁻			
Center-of-mass energy (GeV)	240	91	160	360
Luminosity $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	8.3	192	27	0.8
No. of interaction points	2			

针对低功率Higgs模式Lo设计轨道反馈系统

•
$$L_0 = 5 * 10^{34} \text{ cm}^{-2} s^{-1}$$

● 水平方向的IP轨道反馈:Luminosity-driven with a dithering system

弱東流偏转和低反馈速度应用场景下

$$L(x) = L_0 \exp\left(-\frac{x^2}{2\Sigma_x^2}\right) \quad x = x_0 + A\sin(2\pi ft) \qquad \Sigma_x^2 = \sigma_{x^+}^{*2} + L(x) = L_0 \left(1 - \frac{Ax_0}{\Sigma_x^2}\sin(2\pi ft) - \frac{A^2}{2\Sigma_x^2}\sin^2(2\pi ft)\right) \exp\left(-\frac{x_0^2}{2\Sigma_x^2}\right)$$

(a)

before

- 基于radiative Bhabha at zero degree的亮度监控器
 - 大散射截面
 - 在IP产生的Bhabha粒子与亮度成正比 $N = \sigma \times \mathcal{L} \times \tau \times \epsilon$ $v = \frac{1}{\sqrt{N}}$

Luminosity	Cross section	Number of Bhabha	Aimed precision	Required fraction
5×10^{34}	0.127 barn	6.35×10^6 in 1ms	2% in 1ms	4×10^{-4}

Meng Li

CEPC与快速亮度反馈系统

- 使用BBBREM产生Bhabha粒子
- 初级电子追踪确定最优探测区域
 - SAD code
 - 追踪距离: IP~IP下游100米

	Position 1	Position 2
Distance from IP	10m	90.5m
Average Number detected/collision	3.4(two sides)	3.2(one side)
Average Number detected/ms	2830	2670
Expected Measured Precision	2% @1kHz	2% @1kHz
Average Energy of scattered electron	24GeV	75.3GeV
Average Hitting Angle	1.7×10^{-4} rad	7 × 10 ^{−4} rad
Detection Area	$5 \times 20 \text{ cm}^2$	$3 \times 15 \text{ cm}^2$
Detector Number	2	1
Detector Measurement Parameters	Number of signa	ls within 1ms
Detector Time Resolution	600ns	

Meng Li

CEPC与快速亮度反馈系统

- ●快速亮度探测器与亮度监控仿真——使用(Radiation SEmiconductoR, RASER)
 - GEANT4产生能量沉积
 - DEVSIM求解探测器电场和加权场
 - NGSPICE将电流信号转换为电压信号

http://raser.team

•	开源
•	强拓展
•	易于与其他软件交互

4H-SiC探测器简介

- 较强的抗辐照能力(n,γ,e⁻,p⁺...)
- 较低的漏电流(~pA)
- 较高的热导率(室温~500℃)
- ●优秀的时间分辨能力(~100ps)
- 成本相对较低

5mm×5mm PIN-type detector developed by NJU and IHEP

Electron, Neutron, and Proton Irradiation Effects on SiC Radiation Detectors

The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors

Time Resolution of the 4H-SiC PIN Detector

41st RD50 Workshop on Radiation Hard Semiconductor Devices for Very High Luminosity Colliders (Sevilla, Spain): Silicon Carbide LGAD RD50 common project.

探测器位置与面积优化

● 二次粒子的种类和占比

	$N_{sp}/N_{total}(\%)$		
Secondary particle species	-31mm detect plane	31mm detect plane	
γ	88.05	87.65	
<i>e</i> ⁻	7.06	7.35	
others	4.89	5.00	
total	100	100	

- 在距IP 10m 束流管两侧放置探测器
- 双侧探测二次粒子分布基本一致
- 确定二次粒子的分布确定探测器中心位置:

P1=(-31mm, 0, 230mm)

P2=(31mm, 0, 230mm)

探测器位置与面积优化

● 探测面积优化

- 探测面积为1cm*3cm时其探测精度可达2%
- 探测器每个channel噪声,设定电流阈值(OuA, 0.05uA, 0.5uA, 1uA): 1uA单道噪声可以符合探测需求
- 1ms探测粒子数和探测精度随探测器长度的变化:最终确定的探测面积为1cm(Beam direction)*3cm(Vertical)

探测器位置与面积优化

探测器总面积2*3cm², 共2*12道读出

• 暂时不考虑探测死区

信号响应

● 单个channel信号响应

- 峰数减少至10%
- 峰值降低至76%

信号响应

- 整个探测器信号响应
 - 采用TSC(Total Sample Current),综合描述亮度降低时探测器的响应

- 1ms内TSC与亮度比(L/L₀)具有良好的线性关系
- 通过TSC变化监控亮度变化

总结与未来计划

1. 总结

- ✓ 根据二次粒子的分布确定探测器的大小及放置的位置,满足读出系统等效输入噪声小于1uA时精度可达2%, 满足CEPC快速亮度探测器的需求
- ✓ 1ms的TSC与亮度具有较好的线性关系,因此可以通过TSC变化反馈亮度状态

2. 未来计划

- 距IP距离90.5m的亮度监控系统的设计与仿真
- 4H-SiC探测器优化和测试
- 多通道读出与采样系统的设计与调试