

用于STCF内径迹探测器的 MAPS芯片研究进展

秦家军

(代表STCF ITK-MAPS工作组)

中国科学技术大学

第五届半导体辐射探测器研讨会

2025年4月19日 西安

✤研究背景

✤STCF MAPS芯片设计

✤STCF MAPS芯片测试

❖总结

Super Tau-Charm Facility

✤ 超级陶粲装置(Super Tau-Charm Facility, STCF)

- 国内新一代正负电子对撞机
- 质心能量 2~7 GeV, 亮度>0.5×10³⁵ cm⁻²s⁻¹@4 GeV
- 具备进一步提升峰值亮度和实现束流极化的潜力

STCF ITK物理需求

✤ STCF物理目标

Process	Physics Interest	Optimized	Requirements
		Subdetector	I
$ au o K_s \pi \nu_{ au},$	CPV in the τ sector,		acceptance: 93% of 4π ; trk. effi.:
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in the hyperon sector,	ITK+MDC	> 99% at p_T > 0.3 GeV/c; > 90% at p_T = 0.1 GeV/c
$D_{(s)}$ tag	Charm physics		$\sigma_p/p = 0.5\%$, $\sigma_{\gamma\phi} = 130 \mu\text{m}$ at 1 GeV/c

- ◆ 低动量能区粒子径迹探测的挑战
 - ◇ 多次库伦散射, 径迹探测效率低
 - For BESIII, the tracking efficiency drops sharply below 100MeV

STCF MAPS设计目标

中科大、山大、华师、西工大合作研究

Beam pipe radius: 31 mm

Layer	R (mm)	Stave no.	Chip no.	Area (cm ²)
1	36	12	12	583.9
2	98	32	30	3892.7
3	160	52	48	10120.9

- ✤ MAPS设计需求
 - ◇ 位置分辨: ≤ 100 µm
 - ◇物质量: 单层≤0.3% X₀
 - ◇ 功耗: ≤100 mW/cm² →50 mW/cm²
 - ◇ 时间分辨: ≤ 20 ns (去堆积)
 - ◇ 能量测量 (ToT)
 - time walk修正、多次散射修正
 - Hit rate: ~800 kHz/cm²

- ◆ 探测器结构的初步设计
 - ◇ 三层探测器
 - ◇ 接收角度范围为20°~160°
 - ◇ 单芯片尺寸: 2cm×2cm
 - \diamond 3600 chips
 - ◇ 总面积:~1.5 m²

↔研究背景

✤STCF MAPS芯片设计

✤STCF MAPS芯片测试

原型芯片设计

Pixel Sensor

- ✤ Sensor尺寸考虑
 - 位置分辨要求不高→选择较大尺寸像素,减少读出电路规模,进而降低功耗
 - 尝试比较多种规格模拟连接的sensor,以及多个小像素的数字连接

A: 30 × 30

B: Pixel-based **C**: 180×30

C: Pixel-based 90×60

D: Strip-based 180×30

E: Strip-based

 90×60

ITKM的蒙特卡洛仿真

探测效率除BCIS90外, >98% @300e⁻ threshold

 \checkmark E_{Strip-based} > E_{Pixel-based}

- 对于30 µm pitch小像素,位置分辨4µm to 8µm
- 对于170 µm pitch大像素, 位置分辨~30 um

٠

读出电路-TJ180

2×2 pixels in a double column

2025/4/18

- ◆ 像素内电路
 - 放大甄别,提取前后沿,锁存时间戳
 - Time stamp: 20MHz, 8-bit LE + 8-bit TE
 - Threshold ~ 300 e⁻ (strip-based sensor)
 - ENC=11.4 e⁻, MISMATCH=5.7 e⁻

◆ 读出方式: 数据驱动型列优先级读出

- >99% readout efficiency @8.72MHz/cm²

- 输出数据率: 800 Mbps×2

- ▶ 拓展到2 cm×2 cm
 - \diamond Strip-based: 55.7 mW/cm²
 - \diamond Pixel-based: 46.2 mW/cm²
- ▶ 读出电路功耗~ 50 mW/cm²
 - ◇ 为气冷提供可能性

读出电路-BCIS90

- 500 Mbps LVDS × 2

11

精度提升考虑

- ◆ 高精度位置分辨和时间分辨提供更多的可能
- ✤ 提出基于超级像素的新型读出架构

✓ 小像素→定时快、噪声小✓ 读出通道多→功耗高

TJ & FCIS/BCIS MAPS
 ✓ 大像素→定时较慢、噪声较高
 ✓ 读出通道少→功耗低

12

✓ 小像素→定时快、噪声小

✓ 读出通道少→数字功耗低

相邻像素做"OR" ✓ 小信号像素的ToT丢失 (Cluster>1时)

错位像素做"OR"

- ✓ 避免小信号ToT丢失(Cluster>1时)
- ✓ 读出有效Group地址
- ✓ 多个Group同时有效时,位置信息丢失

错位像素做"OR"、错位摆放Group ✓ 避免小信号ToT丢失

- ✓ 避免位置信息丢失
- ✓ 进一步减小数字功耗

读出电路-GSMC130

- ◆ Pixel Core: Layout可重复的最小阵列
 - Core size: 6×12 pixel
 - Cluster area小于3×4 pixel时,不损失pixel的信息

• C	•Þ_2	•⊳_	•⊳_	•>	•⊳ <mark>6</mark>	•⊳_	•⊳_	•Þ ⁹	•⊳ <mark>10</mark>	•⊳	•⊳_	OR_R_2	
₽ ►	D	₽₽	P	₽ <u></u>	۰ <u>۲</u>	▫▻	P	₽	e D	₽₽		OR_R_1	Digital Logic
•>		⊶≻	н×	⊶≻	₽ >	⊶≻	ъŽ	어≻	P >	ه≻		Sroup_B	Digital Logic
∎⊳	₽₽	• > 3	•⊳4	•	•⊳Ĵ	• > 7	•	••	•⊳¹	•	• D	OR_B_1 OR_B_2	Digital Eugli
↦	₽⊳	⊸⊳	₽⊳	⊶⊳	₽⊳	⋴⊳	₽⊳	ᠳ≻	₽⊳	⋴⊳	₽⊳		
୶≻	₽≻	⊶≻	⊶≻	⊶≻	⊶⊳	⊶≻	⊶⊳	⊶≻	⊶≻	⊶⊳	⊶⊳		

- 像素尺寸: 33 µm×33 µm
- 仿真阈值~150 e⁻
- 细时间精度: 500 MHz VCO
- 仿真功耗:~40mW/cm²

↔研究背景

✤STCF MAPS芯片设计

✤STCF MAPS芯片测试

TJ180测试平台

MAPS芯片

子板背面

MAPS芯片打线

子板正面(阵列区域挖洞)

片内串扰问题

- ◆ 注入电荷后当前列出现持续读出:
 - 优先级读出电路对输入端串扰导致
 - 甄别器输出对输入端串扰导致

- ◆ 解决方法:
 - 数字复位: FPGA接收读出数据后, 全局复位
 - 模拟复位: FPGA接收读出数据后, 复位偏置电流
- ◆ 后续测试均仅读取第一个击中信号
- ◆ 改版设计中优化像素电路版图, 消除数字信号对输入端耦合
 - 增加接衬底guard ring (M1~M5)
 - 数字信号尽量远离输入端

2025/4/19

偏压扫描测试

- ◆ 首先对TJ_V0_CHIP3进行测试,包含两种Sensor
 - Strip-based 170 µm× 31 µm
 - Pixel-based 170 µm× 31 µm

◆ -6 V负衬底电压下正常读出,电学性能有所改善(粗调工作点)

偏压/V	Thr_mean/e	Mismatch/e	TN/e	OUTA幅度/mV
-2	343	8.2	45.5	263
-3	389	17.3	52.6	278
-4	325	8.7	37.0	255
-5	295	8.9	34.3	244
-6	298	10.6	36.8	240

偏压/V	Thr_mean/e	Mismatch/e	TN/e	OUTA幅度/mV
-2	402	10.7	24.2	523
-3	352	4.1	23.0	477
-4	318	1.2	23.1	417
-5	267	8.0	17.0	348
-6	273	10.7	18.2	292

20 us

-40 us

S-curve测试

◆ -6 V衬底偏压,在不同模拟组合下扫描S-curve,确定最佳工作点

Strip-based:

- ✓ 阈值均值319 e-, 阈值离散10.8 e-
- ✓ ENC均值35.0 e-, ENC离散2.3 e-

Pixel-based:

- ✓ 阈值均值312 e-, 阈值离散16.5 e- (仅偶数列)
- ✓ ENC均值17.3 e-, ENC离散2.1 e-

✓ 奇偶列阈值不一致: 电荷标定电路导致; 而非前端电路本身不一致

◆ 误触发率测试: MASK 4个(<1%)击中最高的像素后,误触发率进一步降低
 – Strip-based: 9.0×10⁻³ /pixel/s @~360 e⁻, Pixel-based: 2.1×10⁻³ /pixel/s @~300 e⁻

◆ 利用激光进行效率测试

利用S-curve标定激光强度,约为600e-(<0.375MIP)

• strip阵列像素的探测性能好于pixel阵列

◆ 利用激光进行效率测试

利用S-curve标定激光强度,约为800e-

- ✤ MAPS探测器是STCF ITK重要备选方案之一
- ◆ 要求同时实现位置+时间+电荷测量
 - 单层物质量: ≤0.3% X₀
 - 位置分辨: ≤100µm
 - 功耗: ≤100mW/cm²→ 50mW/cm²
 - 时间分辨: ≤50ns → 20 ns
- ✤ MAPS设计进展
 - 基于TowerJazz180工艺完成原型验证芯片设计(CharTPix-TJ-v0.1),第一版已回片
 - Strip-based: 阈值~320e-, noise ~35e-
 - Pixel-based: 阈值~310e-, noise ~17e-
 - 有串扰现象,已在CharTPix-TJ-v0.2中进行修改
 - 基于GSMC130nm工艺原型芯片(CharTPix-GSMC-v0.1), 2024.9提交流片,即将回片
 - 超级像素+像素内VCO, 高空间分辨、高时间精度
 - 基于BCIS90完成原型验证芯片设计(CharTPix-BCIS-v0.1),并于2025.1提交流片

Thank you for your attention !