

JadePix-3 CMOS 像素探测器的性能测试

<u>胡珈豪1</u>,张睿洋1,陈智良1,徐来林1,卢云鹏2 1中国科学技术大学 2中国科学院高能物理研究所

第五届半导体辐射探测器研讨会 4/19/2025

- Requirements & Design
 - R&D background of JadePix-3
 - Design specifications of JadePix-3 MAPS
- Performance Test @USTC
 - Motivation for substrate reverse bias test
 - Test result
- Summary & Outlook

- The **CEPC** was proposed in 2012 right after the Higgs discovery. It aims to start operation in 2030s, as an e^+e^- Higgs / Z / W factory.
- The JadePix-3 sensors are orientated to the vertex detector for the experiments at the proposed future CEPC for precise measurement of Higgs boson.

- JadePix-3 CDR: (Requirements)
 - Small pixel + Thin chip + Low power
 - Only MAPS technology can meet these requirements
 - What is MAPS?

Monolithic Active Pixel Sensors

- It is called Monolithic technology because <u>sensors</u> and <u>readout electronics</u> are integrated on one chip.
- Advantages:
 - Smaller Pixel Size and Low material budget
 - Lower Costs : implemented in standard commercial CMOS processes
 - Bias Voltage: added to substrate to improve performance by expanding *depleted zone*

Design specs of JadePix-3 MAPS

P. Yang, Y. Zhang, Y. Zhou, L. Xiao, L. Zhang, Z. Shi, D. Guo, Z. Wu, Yunpeng LU

Threshold current

Discriminator

Cascode amplifier

- JadePix-3 optimized for position resolution and low power consumption with Tower Jazz 180nm process.
 - Minimum pixel size: 16 μ m × 23.11 μ m
 - Matrix readout time: 98.3 µs/frame
- ALPIDE-like front-end with binary readout.

Motivation

• Bias Voltage added to the substrate should improve performance metrics:

- (front-end) Noise, Input Capacitance
- (detection) Detection Efficiency, Charge Collection Efficiency
- Radiation Tolerance

.

Unbiased test done previously @NIMA 1048 (2023) 167967

Searching Work-points under Bias

- Designed operating state cannot support all bias V_{sub} levels.
- Work-point Selection from $V_{sub}=0 \sim -6V$
 - VCLIP, VCASN2 adjustment
 - Adjusting VCASN and V_{sub} to keep threshold $\simeq 210 e^{-4}$
 - ITHR scan to achieve distinct thresholds 100~270 e^{-1}

胡珈豪(中国科学技术大学)

NMOS

Noise

- Noise Rate represents the possibility of a pixel hit without any particle interactions
 - $R = \frac{\text{Noise Hit Counts}}{\text{Pixel Number } \times \text{Time}}$
- Noise reducing as the threshold increasing
- Noise reducing to ZERO as Bias Voltage increasing
 - Bias Voltage improves Noise performance

Input Capacitance

- Input Capacitance, C_{input} accessed by calculating analog response
- Smaller C_{input} increase voltage excursion and improves the SNR
- C_{input} reduced nearly 65% as Bias Voltage increasing!

Charge Collection Ability

- JadePix-3 exposed to a Sr90(β) source with activity~1200 Bq
- Cluster Size reflects charge collection & localization ability
- Average Cluster Size reduced nearly 25% as Bias Voltage increasing
 - Bias Voltage improves charge collection ability!

Relative Detection Efficiency

- JadePix-3 exposed to a Sr90(β) source with activity~1200 Bq
- Relative Detection Efficiency is proportional to cluster numbers accumulated
- Efficiency improved by 10% from Bias Voltage 0V to -5V
 - Bias Voltage improves detection efficiency!
 - Sector 1(D-flipflop) exceeds Sector 2(RS-flipflop)

JadePix-3 (underneath)

Sr90 source

Previous Beam Test @DESY TB21

Sheng DONG, Jia ZHOU, Zhiliang CHEN, Yunpeng LU

- JadePix-3 exposed particle beam, up to 1000 particles per cm² and energies from 1 ~ 6 GeV
- In-pixel detection efficiency plot
 - Efficiency ~ 98%, Position Resolution ~ 5 μm
 - higher efficiency at the long edge center to the short edge center

Test Setup @DESY Dec.2022

Infrared Laser Test

- JadePix-3 exposed to laser beam with 1064nm wavelength
- X-Y scan performed @zero bias
 - Higher hit counts at the long edge center to the short edge center
 - Consistent with beam test

Laser Test Setup

胡珈豪(中国科学技术大学)

Infrared Laser Test

- Detection Sensitivity Index (DSI), quantifying pixel sensitivity to laser
 - **DSI** = Laser attenuation value where hit counts drop to half the maximum
 - Bias Voltage significantly improves overall detection efficiency to laser!

胡珈豪 (中国科学技术大学)

Summary

- JadePix-3 is designed for CEPC vertex detector
 - Optimized for high resolution, low power, low mass budget
- Performance enhanced under Bias condition:

Noise	Input Capacitance	Charge Collection	Efficiency	Other performance
Reduce to ZERO	Reduced 65%	Improve 25%	Enhanced 10%	•••••

• Beam Test in preparation

感谢高能所卢云鹏老师 提供的支持!

Test System Setup@USTC

Silicon pixel detector

Hybrid

- Separately optimize sensor and FE-chip for very high radiation environment
- Fine pitch bump bonding to connect sensor and readout chip

Monolithic

- Charge generation volume integrated into the ASIC, but many different variants!
- Thin monolithic CMOS sensor, on-chip digital readout architecture

- Hit registered in each pixel has to be processed fast
 - Hit position (col. and row address) encoded
 - Time stamp attached
 - Register reset for the next hit
- ✓ Rolling Shutter Mode deployed
 - ✓ row address encoding
 - \checkmark iterate over all rows \rightarrow Take a shutter
 - ✓ Multiple frames \rightarrow Long exposure

'Photo' took by RS under radio-source for 10,000 frames

Front-end Circuit

Beam Test Result

@DESY Sheng Dong, Zhiliang Chen

- Electron beam energy = 5.8GeV
 - Demonstrated excellent spatial resolutions of 5.2 & 4.6 μ m in two dimensions.
 - Threshold scan performed below:

- Physics goals @ CEPC
 - Identify b/c quarks and tau leptons from Higgs
 - Perform a precise measurements of the Z boson

- Require a 3 µm spatial resolution
- Fast readout speed of 20 µs
- Very low mass budget (<0.15% X₀ / layer)
- Adequate radiation tolerance

JadePix MAPS

Requirements for e^+e^- @ different energy regions

- Monolithic detector can meet different experimental needs
 - Design & optimize pixel chips for specific experimental needs

Infrared Laser Test

- Test procedure
 - 1.Scan in z-direction, zero bias to determine the position of beam waist.
 - 2.Scan in xy-direction, 0V/-1V/-2V bias and tune 95%/99%.
 - 3.Residual=Reconstruct Motor
 - Gauss fit
 - Case-by-case statistics
 - Point-by-point statistics

Laser Test Platform

Infrared Laser Test

Bias(V),Tune	Point-by-point statistics		Case-by-case statistics	
	Column Resolution/um	Row Resolution /um	Column Resolution/um	Row Resolution /um
0,95%	1.92	1.68	3.26	3.21
0,99%	4.16	1.97	4.67	3.36
-1,95%	2.33	1.75	3.13	2.74
-1,99%	2.05	2.29	2.96	3.20
-2,95%	3.24	1.76	3.71	2.63
-2,99%	2.49	1.78	3.11	2.65