Neutringless Double beta decay with PandaX

HAN, Ke 韩柯 (SJTU) For the PandaX Collaboration $2025/1/14$

PandaX: Particle and astrophysical Xenon Experiment

PandaX detectors

PandaX-4T @ Hall B2 of CJPL-II

PandaX-4T

- A multi-ton dual-phase xenon TPC at B2 hall of China Jinping Underground Laboratory
- 1.2 m (D) ×1.2 m (H); Sensitive volume: 3.7-ton LXe; 3-inch PMTs: 169 top / 199 bottom
- Water shielding

Detector is taking Run 2 data

Liquid Xenon Time Projection Chamber (LXe TPC)

- Prompt scintillation signal (S1) followed by drift electron signal (S2)
- Measures the 3D position, energy, and time
- Nuclear Recoil (NR) and electron recoil (ER) discrimination
- Single-site (SS) and multi-site (MS) event discrimination
- Large monolithic target: High signal efficiency and effective self-shielding
- LXe TPC as a Total-Absorption 5D Calorimeter

PandaX 0vBB

上海交大 韩柯

decay, such as those with the emission of Majorons [19–24].

• J.M. Yao, J. Meng, Y.F. Niu, P. Ring, Prog.Part.Nucl.Phys. 126 (2022), 103965 **Fig. 2.** The *Q* value of 35 natural isotopes fulfilling the energy condition for undergoing decay. The isotopes with *Q >* 2*.*0 MeV are

PandaX 0νββ 上海交⼤ 韩柯 18

Detection of double beta decay

• Examples:

$$
^{136}_{54}Xe \rightarrow ^{136}_{56}Ba + 2e^- + (2\bar{v})
$$

$$
^{130}_{52}Te \rightarrow ^{130}_{54}Xe + 2e^- + (2\bar{v})
$$

Sum of two electrons energy

- Measure energies of emitted electrons
- Electron tracks are a huge plus
- Daughter nuclei identification

Simulated track of 0νββ in high pressure Xe

0νββ probes the nature of neutrinos

- Majorana or Dirac
- Lepton number violation
- Measures effective Majorana mass: relate 0νββ to the neutrino oscillation physics

Impressive experimental progress

PandaX 0νββ 上海交⼤ 韩柯 21

PandaX 0νββ 上海交⼤ 韩柯 22

Major $0\nu\beta\beta$ experiments around the world

US Nuclear Science Long-term planning

2015

RECOMMENDATION II

The excess of matter over antimatter in the universe is one of the most compelling mysteries in all of science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antiparticles and would have profound implications for our understanding of the matterantimatter mystery.

We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment.

2023

RECOMMENDATION 2

As the highest priority for new experiment construction, we recommend that the United States lead an international consortium that will undertake a neutrinoless double beta decay campaign. featuring the expeditious construction of ton-scale experiments, using different isotopes and complementary techniques.

Sensitivity comparison

134Xe (0)2νββ searches at PandaX-4T

- Q=826 keV; Half-life from theoretical predictions: 10^{24} - 10^{25} vr; Never been observed
- Previous 2νββ (0νββ) half-life limit from EXO-200 : $T > 8.7x10^{20}$ yr (1.1x10²³ yr) at 90% CL
- PandaX-4T: more $134Xe$; much less $136Xe$; wider energy range; discovery possible

134Xe half-life limits @ PandaX-4T

- Simultaneous fit for 134 Xe $2\nu\beta\beta$ and $0\nu\beta\beta$
- Final counts of $2\nu\beta\beta$ and $0\nu\beta\beta$: 10 ± 269 (stat.) ± 680 (syst.) and 105 ± 48 (stat.) ± 38 (syst.)
- 90% CL lower limits on the half-life: $T_{1/2}^{2\nu\beta\beta} > 2.8\cdot 10^{22} \text{ yr}$ and $T_{1/2}^{0\nu\beta\beta} > 3.0\cdot 10^{23} \text{ yr}$

Search for ¹³⁶Xe 0νββ with natural Xe TPC

PandaX 0νββ 上海交⼤ 韩柯 31

Extending energy from keV to *O*(100 keV) – *O*(MeV)

- S2 waveform slicing to improve SS and MS identification
- PMT desaturation for large S2 signals
- Improvement of X-Y position reconstruction, energy linearity and energy resolution

Energy Response Model

- Residual shift between simulated energy and reconstructed energy
- Energy resolution vs. reconstructed energy
- Response model from physics data in slim regions outside FV
- Model parameters naturally included in the likelihood fitting \bullet

$$
\frac{\sigma(E)}{E} = \frac{d}{\sqrt{E}} + e \cdot E + f.
$$

SS vs. MS

- MeV gamma events are mostly multiple-scattering events; while signals (DBD) are mostly single site (SS)
- Identifying Multi-Site (MS) events with PMT waveforms
- Width of waveforms dominated by Z (electron diffusion)

SS Fraction (SS/Total) determination

- Data-driven S2 waveform simulation + data processing \bullet
- SS fraction uncertainty is estimated by comparison \bullet MC/data of ²³²Th calibration
- Spectrum average of the absolute bin-by-bin deviation \bullet between data and MC taken as SS fraction uncertainty

Background Model

- ¹³⁶Xe 2 $\nu\beta\beta$ (from PandaX measured ¹³⁶Xe half-life)
- Detector material: 60 Co, 40 K, 232 Th, 238 U (from HPGe material assay), and grouped into top, side, and bottom parts
- Stainless steel platform (SSP): 232Th, 238U (from MS fitting)

Stainless steel platform (SSP) contribution

 \mathbf{I}

120014001600180020002200240026002800 Energy [keV]

1

Fiducial Volume (FV)

- $FoM \propto \frac{m}{\sqrt{B}}$
- FV is further divided into four regions to better constrain detector material background from top, side, and bottom parts

FoM

• FV is optimized by maximizing the FoM

Likelihood and Systematics

-
- Binned Poisson likelihood with Gaussian penalty terms to constrain nuisance parameters
- Systematics include three categories: energy response, overall efficiency, 136 Xe mass
- ¹³⁶Xe mass uncertainties: abundance from RGA measurement; FV mass from the nonuniformity of 83mKr + LXe density fluctuation

$$
L = \prod_{r}^{N_{run}} \prod_{i}^{N_{region}} \prod_{j}^{N_{bins}} \frac{(N_{rij})^{N_{rij}^{obs}}}{N_{rij}^{obs}!} e^{-N_{rij}}
$$

$$
\cdot \prod_{r}^{N_{run}} [\mathcal{G}(\mathcal{M}_r; \mathcal{M}_r^0, \Sigma_r^{\mathcal{M}}) \cdot \prod_{k}^{N_{eff}} G(\eta_r^k; 0, \sigma_r^k)
$$

$$
\cdot \prod_{b}^{N_{bkg}} G(\eta^b; 0, \sigma^b)
$$

$$
N_{rij} = (1 + \eta_r^o) \cdot [(1 + \eta_r^s) \cdot n_r^s \cdot S_{ijr}
$$

$$
+ \sum_{b}^{N_{bkg}} (1 + \eta^b) \cdot n_r^b \cdot B_{ijr}^b]
$$

Blinded Fit and Sensitivity

Goodness-of-fit: $\chi^2/NDF = 1.14$

Median sensitivity is estimated by fits to toy-data, generated from background model.

$$
T_{1/2,\,sensitivity}^{0\nu\beta\beta} > 2.7 \times 10^{24} \text{ yr at } 90\% \text{ C.L.}
$$

上海交大 韩柯

Unblinded Fit and Results

- 136Xe exposure: 44.6 kg-yr
- Energy resolution @ 2615 keV: 2.0% in Run0 and 2.3% in Run1
- ¹³⁶Xe 0νββ event rate: $14\pm55 t^{-1}yr^{-1}$, <111 $t^{-1}yr^{-1}$ at 90% C.L.
- $T_{1/2}^{0\nu\beta\beta} > 2.1 \times 10^{24}$ yr at 90% C.L. $\langle m_{\beta\beta} \rangle = (0.4 1.6) \text{ eV}/c^2$

Search for $136Xe$ 0νββ with natural Xe TPC

- The most stringent constraint from a natural xenon detector
- Improvement w.r.t PandaX-II by an order of magnitude and XENON1T by a factor of 1.8
- Demonstrating the potential of $136Xe$ Ov $\beta\beta$ search with next-generation multi-ten-tonne natural xenon detectors

PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory

- Active target: 43 tons of Xenon
	- Test the WIMP paradigm to the neutrino floor
	- Explore the Dirac/Majorana nature of neutrino
	- Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions
- Notable detector improvements:
	- High-granularity, low-background 2-in PMT array
	- Cu/Ti vessel for improved radiopurity
	- Inner liquid scintillator veto

SCPMA 68, 221011 (2025)

PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory

- Active target: 43 tons of Xenon
	- Test the WIMP paradigm to the neutrino floor
	- Explore the Dirac/Majorana nature of neutrino
	- Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions
- Notable detector improvements:
	- High-granularity, low-background 2-in PMT array
	- Cu/Ti vessel for improved radiopurity
	- Inner liquid scintillator veto

SCPMA 68, 221011 (2025)

- 4 ton of 136 Xe: one
- Effective self-shielding: Xenon-related background dominates in the 8.4-tonne center FV

Head-to-head with other DM/0νββ experiments

PandaX 0νββ 上海交⼤ 韩柯 47 * Major difference from cosmogenic ¹³⁷Xe; ** $\frac{s}{\sqrt{B}}$ sensitivity is 6×10²⁷ yr, for detector performance comparison in the table.

Sensitivity comparison

Possible isotope seperation/enrichment

-
- Xenon with artificially modified isotopic abundance (AMIA) for smoking gun discovery
	- A split of odd and even nuclei
	- Further enrichment of $136Xe$
	- to improve sensitivity to spin-dependence of DM-nucleon interactions and 0νββ

Neutrinoless double beta decay with PandaX

- Neutrinoless double beta decay is at the frontier of particle and nuclear physics: the Majorana nature of neutrino and beyond
- Global competition: LEGEND (US), CUPID (EU), and KamLAND2-ZEN (JP); all with enriched materials

- PandaX-4T has established the most stringent $136Xe$ limit from a natural xenon detector
- PandaX-xT will be one of the most competitive 0νββ experiments

Thank you very much

We welcome new collaborators

at PandaX-xT

Data selection

- An identical FV as in 136 Xe analysis, total isotopic exposure: 17.9 kg·yr
- Single site vs multi-site selection measured by ²³²Th calibration data
	- Little impact to DBD signals (β SS events)

PandaX, Phys.Rev.Lett. 132 (2024) 15, 152502

Signal efficiencies

- 134Xe $2\nu\beta\beta$ and $0\nu\beta\beta$ events generated with the theoretical calculation
- The signal events went through PandaX-4T simulation and data processing chain

- ROI [200,1000]keV cut:
	- $2\nu\beta\beta$: 60.56%
	- $0\nu\beta\beta$: 99.98%

- SS ratio in ROI:
	- $2\nu\beta\beta$: 99.89%
	- $0\nu\beta\beta$: 98.23%

[Physical Review C](http://dx.doi.org/10.1103/PhysRevC.85.034316) **85, 034316 (2012)**

Background model

Bench test for saturation and new PMT base design

- PMT waveform saturation is studied by independent bench tests
- Desaturation algorithm is checked and verified and Dark Box PMTs in dark box **FADC Didigital Data** DAQ **Pulse Generato**
- New PMT base design to increase the dynamic range
- All PMT bases have been changed in Run2

Unified Data Reconstruction Pipeline

Optimizations in data processing:

- \triangleright Recovered ~0.5% SS events by an improved time window cut
- \triangleright S1 waveform slicing to improve alpha events reconstruction
- ≥ 3.5 ms dead-time cut before ²¹⁴Po events to remove isolated ²¹⁴Bi events: \sim 1% background reduction and negligible data loss
- \triangleright And more...

Unified pipeline for Run0 and Run1

 \triangleright Reconstructed spectra of Run0 and Run1 are consistent, considering the 222Rn increase in Run1

Blind analysis: ROI = [2356, 2560] keV, only SS events used

1600 1800 2000 2200 2400 2600 2800

Energy [keV]

Background Model

- ¹³⁶Xe 2 $\nu\beta\beta$ (from PandaX measured ¹³⁶Xe half-life)
- Detector material: 60Co, 40K, 232Th, 238U (from HPGe material assay), and grouped into top, side, and bottom parts
- Stainless steel platform (SSP): 232Th, 238U (from MS fitting)

Other background components are checked:

- Residual ²¹⁴Bi in TPC -> negligible
- \triangleright Gammas of ²¹⁴Bi from LXe skin region -> negligible
- 2.5 MeV peak from 60 Co cascade gammas -> well modelled

Likelihood and Systematics

- Binned Poisson likelihood with Gaussian penalty terms to constrain nuisance parameters
- Systematics include three categories: energy response, overall efficiency, ¹³⁶Xe mass
- Background model and systematics are included in likelihood fitting

$$
L = \prod_{r}^{N_{run}} \prod_{i}^{N_{region}} \prod_{j}^{N_{bin}} \frac{(N_{rij})^{N_{rij}^{obs}}}{N_{rij}^{obs}} e^{-N_{rij}}
$$
\n
$$
\cdot \prod_{r}^{N_{run}} [G(\mathcal{M}_{r}; \mathcal{M}_{r}^{0}, \Sigma_{r}^{\mathcal{M}}) \cdot \prod_{k}^{N_{eff}} G(\eta_{r}^{k}; 0, \sigma_{r}^{k})]
$$
\n
$$
\cdot \prod_{b}^{N_{bkg}} G(\eta^{b}; 0, \sigma^{b})
$$
\n
$$
N_{rij} = (1 + \eta_{r}^{o}) \cdot [(1 + \eta_{r}^{s}) \cdot n_{r}^{s} \cdot S_{ijr} + \sum_{b}^{N_{bkg}} (1 + \eta^{b}) \cdot n_{r}^{b} \cdot B_{ijr}^{b}]
$$
\n
$$
N_{mid} = \prod_{i}^{N_{bkg}} \frac{136 \times 100}{2400 \times 1000} \times 1000
$$
\n
$$
N_{v}
$$
\n<math display="</math>

- 136Xe abundance is measured by RGA with xenon samples from detector
- FV mass uncertainty is estimated from the nonuniformity of 83mKr calibration data distribution, plus the LXe density fluctuation (pressure fluctuation) during

Background counts and parameter pulls

 \triangleright All pulls of nuisance parameters fall within the $\pm 2\sigma$ range

- \triangleright All best-fit nuisance parameters are consistent between the blinded and unblinded fits
- \triangleright Pull of top ⁶⁰Co reaches 1.8 σ , indicating that the model expectation from the HPGe material assay might be slightly underestimated

