

J/ψ azimuthal anisotropy measurement in pp collisions at \sqrt{s} =13.6 TeV with ALICE

Senjie Zhu (朱森杰)

Supervisor: Yifei Zhang (张一飞)

Dec. 27, 2024

Contents

- Introduction
- Dataset and QA
- Methodology
- Results
- Summary
- Research Plan

Contents

• Introduction

- Dataset and QA
- Methodology
- Results
- Summary
- Research Plan

Azimuthal anisotropy at peripheral heavy ion collisions

- Peripheral heavy ion collisions
 - 1. Large energy is deposited in a system with initial space azimuthal anisotropy.
 - 2. Created medium are heated and **finally thermalized.**
 - \rightarrow Quark gluon plasma is formed. Quarks and gluons are deconfined. <u>Parton freedom degree is released.</u>
 - \rightarrow Initial space azimuthal anisotropy is transferred to <u>momentum azimuthal anisotropy</u> via strong coupling.
 - 3. System cools down and deconfined partons hadronized and fragmented into hadrons.
 - \rightarrow Final states, hadrons from partons, inherit <u>momentum azimuthal anisotropy</u> from thermalized partons.

$$f(\phi)=rac{1}{2\pi}(1+2\Sigma_{n=1}^{\infty}v_ncos(n(\phi-\Psi_{EP})))$$

- Evaluation of momentum azimuthal anisotropy
 - Fourier coefficient of azimuthal distribution with respect to event plane

- Strong evidence of thermalization at parton freedom degree (NCQ scaling)
 - v_2/n_q of different particle species agree with each other quite well.
 - $(n_q \text{ is the number of the constituent quarks})$
 - \rightarrow the parton freedom degree is released and the system is thermalized.

Flow of heavy quarks at heavy ion collisions

- At LHC, charm quark density in the created medium is high enough to couple together and form J/ψ .
- $J/\psi v_2$ at heavy ion collisions
 - Charm quarks are pushed by medium and thermalized. $\rightarrow J/\psi$ from recombination inheriting collective motion of charm quark will have significant v_2 .

Flow(-like) phenomena in small systems

 $|\eta| < 0.8$

0.14

0.12

0.1

0.08

0.06

0.04

0.02

ALI-PREL-153063

ALICE Preliminary

 $0.2 < p_{-} < 3.0 \text{ GeV}/c$

p-Pb

13

 10^{2}

Xe-Xe

Pb-Pb

 10^{3}

 N_{ch} ($|\eta| < 0.8$)

5.02 Vs_{NN} (TeV)

 $v_{2}\{2, |\Delta \eta| > 1.4\}$ $v_{2}\{2, |\Delta \eta| > 1.0\}$

♦ v₄{2, |Δη| > 1.0}

First observation of long-range correlation ridge in pp

- Flow(-like) phenomena exist in • small systems, even when multiplicity is low.
- What is the origin of flow(-like) • phenomena in smaller systems?

Dec. 27, 2024

System-size dependent flow(-like) phenomena

- How is going when systems get smaller?
 - Flow(-like) phenomena should be study at different systems (different collisions with different multiplicities).
 - How is the system? Is that system in equilibrium?
 - How does the quark interact with the medium? Are the quark species thermalized?

System-size dependent flow(-like) phenomena

System dependent $J/\psi v_2$

- A significant $J/\psi v_2$ is observed in Pb-Pb collisions.
- $J/\psi v_2$ described well by a coalescence model where charm thermalized
- $J/\psi v_2$ in p-Pb collisions is consistent with 0 at the low p_T ,
- but increases to the similar values to Pb-Pb at high p_T .

• $J/\psi v_2$ in pp collisions compatible with 0 with large uncertainties

ALICE RUN 3 upgrade

Time Projection Chamber Tracking, particle identification

Inner Tracking System Tracking, vertex reconstruction

V0 Detector

Centrality determination triggering, and reaction plane measurement

$$J/\psi \rightarrow e^+e^-$$

ALICE RUN 3 Upgrade

- Statistic has been increased a lot in RUN 3.
- Plentiful J/ψ counts has already been seen.
- Measurement of $J/\psi v_2$ in pp is possible.

Contents

- Introduction
- Datasets and QA
- Methodology
- Results
- Summary
- Research Plan

Datasets and Analysis Cuts

- Dataset
 - DQ_Skimmed: LHC22_HighIR_pass4_electron
 - AliHyperloop (cern.ch)
 - Including:
 - 22moprt
 - Offline trigger:
 - Events should contain two p_T > 1 GeV electrons

- Track Quality Cuts:
 - $0 < \chi^2_{TPC} < 4$
 - $Ncls_{TPC} > 90$
 - $Ncls_{ITS} > 2$
 - IsSPDany (have at least one hit at the innermost two ITS layers)
 - $-1 < DCA_{xy} < 1$
 - $-3 < DCA_z < 3$
- Kinematic Cuts for electrons from J/ψ :
 - $-0.9 < \eta < 0.9$
 - $p_T > 1 \,\,{\rm GeV/c}$
- Kinematic Cuts for reference flow:
 - $-0.9 < \eta < 0.9$
 - $0.2 < p_T < 3 \text{ GeV/c}$

Detailed ϕ acceptance check

- Efficiency loss at the coverage in the red box
- No acceptance is lost but the efficiencies are low at specific $\eta \phi$ region for SPD.
- If there's no IsAnySPD cut, a large fluctuation of ϕ distribution will be observed.
- Non-uniform Acceptance should be done from run to run.

Non-uniform Correction

- The dimension of non-uniform correction for reference flow should also include Vtx_z , η from run to run.
- And for non-uniform correction for J/ψ , p_T of J/ψ should also be included.

Contents

- Introduction
- Dataset and QA
- Methodology
- Results
- Summary
- Research Plan

 $\begin{aligned} v_n v'_n &= \langle \cos n(\phi - \psi) \rangle \\ v_n^2 &= \langle \cos n(\phi_1 - \phi_2) \rangle \end{aligned}$

- v_n : the *n*-th harmonic coefficient of REF
- v'_n : the *n*-th harmonic coefficient of POI
- ϕ : azimuthal angle of reference flow
- ψ : azimuthal angle of J/ψ

- Barrel Q-vector $\rightarrow Q_n = \sum_{i=1}^M e^{in\phi_i} = Q_n^X + iQ_n^Y$
- Dielectron Q-vector $\rightarrow p_n = \sum_{i=1}^m e^{in\psi_i} = p_n^X + ip_n^Y$

M: multiplicity barrel, *m*: multiplicity dielectron

$$V_{n,2}' = v_n v_n' = \frac{p_n Q_n^*}{mM}$$

Dielectron harmonic coefficient:
$$v_2^{ee} = \frac{V'_{2,2}}{\sqrt{V_{2,2}}}$$

Non-uniform Correction

- Non-uniform effect of detector acceptance should be corrected.
 - With uniform acceptance:

$$\langle \cos n(\phi - \psi) \rangle = \iiint d\phi d\psi \frac{d\Psi_{EP}}{2\pi} f(\phi) f'(\psi) \cos n(\phi - \psi)$$

• With non-uniform acceptance:

$$\langle \cos n(\phi - \psi) \rangle = \iiint d\phi d\psi \frac{d\Psi_{EP}}{2\pi} A(\phi) A'(\psi) f(\phi, \Psi_{EP}) f'(\psi, \Psi_{EP}) \cos n(\phi - \psi)$$

 p_n (dielectron)

Ρ

 $A(\psi)$

-0.9

 Q_n (barrel track)

η

0.9

R

Acceptance function J/ψ : $A(\psi)$

• $\int A(\phi) \frac{d\phi}{2\pi} = \int A'(\psi) \frac{d\psi}{2\pi} = 1$

Acceptance function barrel: $A'(\phi)$

 $A'(\phi)$

Non-uniform Correction

• Non-uniform effect of detector acceptance should be corrected.

- Acceptance function J/ψ : $A(\psi)$
- Acceptance function barrel: $A'(\phi)$

•
$$\int A(\phi) \frac{d\phi}{2\pi} = \int A'(\psi) \frac{d\psi}{2\pi} = 1$$

Shifting part

$$v_n v'_n = \frac{\langle \cos n(\psi - \phi) \rangle - \langle \cos n\psi \rangle \langle \cos n\phi \rangle - \langle \sin n\psi \rangle \langle \sin n\phi \rangle}{1 + \langle \cos 2n\psi \rangle \langle \cos 2n\phi \rangle + \langle \sin 2n\psi \rangle \langle \sin 2n\phi \rangle} \frac{\text{Dimension of correction}}{\text{REF} \qquad \eta, V_z}}{\text{POI} \qquad M, \eta_{J/\psi}, V_z, p_T}$$

Contents

- Introduction
- Dataset and QA
- Methodology
- Results
- Summary
- Research Plan

$V_{2,2}(J/\psi - track \ barrel)$ Measurements

• FT0C multiplicity is used as the multiplicity indicator.

- $V'_{2,2}$ without any p_T or multFT0C cuts
- A peak-like structure has been observed.

- $N_{total} = N_{signal} + N_{background}$
 - *N_{signal}*: Crystal ball function
 - *N*_{background}: Scaled mix event, residual background

•
$$V(ee - track \ barrel) = \frac{N_{signal}}{N_{total}} V(J/\psi - track \ barrel) + \frac{N_{background}}{N_{total}} V(bkg - track \ barrel)$$

• V(bkg-track barrel): polynomial function

Fit simultaneously:

- Calculate the χ^2 of the two function above
- Minimize the χ^2 with Minuit

- $N_{total} = N_{signal} + N_{background}$
 - *N_{signal}*: Crystal ball function
 - *N_{background}*: Scaled mix event, residual background

•
$$V(ee - track \ barrel) = \frac{N_{signal}}{N_{total}} V(J/\psi - track \ barrel) + \frac{N_{background}}{N_{total}} V(bkg - track \ barrel)$$

• V(bkg-track barrel): polynomial function

• Fit can't describe data well.

- Fit can't describe data well.
- Apply $\Delta \eta > 0.1$, $p_T > 1$ GeV/c to get larger signal and flatter background. Background is still strange.

- Fit can't describe data well.
- Apply $\Delta \eta > 0.1$, $p_T > 1$ GeV/c to get larger signal and flatter background. Background is still strange.
- RUN2 published results with a larger η gap also has a strange background shape.
- A smaller mass region and finer mass bin width should be used.

Low statistic condition

• When statistic is low, TProfile will bias the mean value and underestimate the uncertainty. Shifting part

$$v_n v'_n = \frac{\langle \cos n(\psi - \phi) \rangle - \langle \cos n\psi \rangle \langle \cos n\phi \rangle - \langle \sin n\psi \rangle \langle \sin n\phi \rangle}{1 + \langle \cos 2n\psi \rangle \langle \cos 2n\phi \rangle + \langle \sin 2n\psi \rangle \langle \sin 2n\phi \rangle}$$
Scaling part

• The NUE correction and uncertainty propagation are unreliable.

Low statistic condition

Contents

- Introduction
- Dataset and QA
- Methodology
- Results
- Summary
- Research Plan

Summary

- The framework has been set up.
- 2 papers published

Contents

- Introduction
- Dataset and QA
- Methodology
- Results
- Summary
- Research Plan

BACKUP

Event Information

Dec. 27, 2024

Senjie Zhu, Doctoral Dissertation Proposal

Data quality check

Data quality check

Data quality check

Bad runs: 528781, 528292, 523142

Detail Check Before Cuts

Observable

$$f(\phi) = rac{1}{2\pi}(1+2\Sigma^{\infty}_{n=1}v_ncos(n(\phi-\Psi_{EP}))))$$

• Basic idea (in isotropic case)

$$\iiint d\phi d\psi rac{d\Psi_{EP}}{2\pi} f(\phi) f'(\psi) \cos m(\phi-\psi) = v_m v'_m.$$

• Practical observable

Define $q_n = \Sigma_\mu e^{in\phi_\mu}$ for REF and $Q_n = \Sigma_\mu e^{in\psi_\mu}$ for POI in for per event.

$$V_{2,2}(J/\psi-tracklet)=Re(rac{\Sigma_i(V_{2,2})_iW_i}{\Sigma_iW_i})=v_2v_2'$$

In the practical code, profiles will be filled to calculated $V_{2,2}$.

$$(V_{2,2})_{single\ event}=Re(rac{Q_2ar{q_2}}{Q_0q_0})$$

will be filled for each events with weight $W_{single\ event} = Q_0 q_0$.

Uncertainty estimation

• Uncertainty estimation in TProfile

Uncertainty estimation

Assuming a distribution with mean value μ and variance σ^2 ,

• In correlation by correlation case,

 $\{(x_i, w_i), 1 < i < N\}$.

$$\begin{split} \bar{x} &= \frac{\Sigma_{i} w_{i} x_{i}}{w_{i}} = \frac{\Sigma_{i} w_{i} \mu}{w_{i}} = \mu \\ \overline{x^{2}} - \bar{x}^{2} &= \frac{\Sigma_{i} w_{i} x_{i}^{2}}{w_{i}} - (\frac{\Sigma_{i} w_{i} x_{i}}{w_{i}})^{2} \\ &= \frac{\Sigma_{i} w_{i} (\mu^{2} + \sigma^{2})}{\Sigma_{i} w_{i}} - \frac{1}{\Sigma_{i} w_{i}^{2}} (\Sigma_{i} w_{i}^{2} x_{i}^{2} + \Sigma_{i \neq j} w_{i} w_{j} x_{i} x_{j}) \\ &= (1 - \frac{\Sigma_{i} w_{i}^{2}}{(\Sigma_{i} w_{i})^{2}}) \sigma^{2} + \mu^{2} - \frac{1}{\Sigma_{i} w_{i}^{2}} (\Sigma_{i} w_{i}^{2} + \Sigma_{i \neq j} w_{i} w_{j}) \mu^{2} \\ &= (1 - \frac{\Sigma_{i} w_{i}^{2}}{(\Sigma_{i} w_{i})^{2}}) \sigma^{2} \end{split}$$

$$\{(x_{i,j}, w_{i,j}), 1 < i < n_j, 1 < N < j\},\ W_j = \Sigma_{i=1}^{n_j} w_{i,j} \quad X_j = \Sigma_{i=1}^{n_j} w_{i,j} x_{i,j} / W_j.\ ar{X} = rac{\Sigma_j^N W_j X_j}{\Sigma_j^N W_j} = \mu\ \sigma_{measured}^2 = \overline{X^2} - \overline{X}^2 = rac{\Sigma_j^N W_j X_j^2}{\Sigma_j^N W_j} - (rac{\Sigma_j^N W_j X_j}{\Sigma_j^N W_j})^2$$

• In the measurement, the even-by-event uncertainty estimation should be corrected to correlation-by-correlation case. This can be done with a scale.

$$\sigma_{measured}^2 = (\frac{\Sigma_j \frac{\Sigma_i^{n_j} w_{i,j}^2}{W_j}}{\Sigma_j W_j} - \frac{\Sigma_{i,j} w_{i,j}^2}{(\Sigma_{i,j} w_{i,j})^2})\sigma^2 = \frac{\Sigma_j \frac{\Sigma_i^{n_j} w_{i,j}^2}{W_j}}{\Sigma_j W_j}\sigma^2$$

$$\begin{aligned} & \text{Finally } \Delta^2_{corrected} = \Delta^2_{TProfile} \frac{(\Sigma_j W_j)^2}{\Sigma_j W_j^2} \frac{\Sigma_j W_j}{\sum_j \frac{\Sigma_i^{n_j} w_{i,j}^2}{W_j}} \frac{\Sigma_{i,j} w_{i,j}^2}{(\Sigma_{i,j} w_{i,j})^2} = \Delta^2_{TProfile} \frac{\Sigma_j W_j}{\Sigma_j W_j^2} \frac{\Sigma_{i,j} w_{i,j}^2}{\sum_j \frac{\Sigma_i^{n_j} w_{i,j}^2}{W_j}} \end{aligned}$$

Dec. 27, 2024

Senjie Zhu, Doctoral Dissertation Proposal

42

Non-uniform Correction

- Define acceptance function $A(\phi)$ for the reference track, and $A'(\psi)$ for J/ψ with condition $\int A(\phi) \frac{d\phi}{2\pi} = 1$ and $\int A'(\psi) \frac{d\psi}{2\pi} = 1$
- Now, $\iiint d\phi d\psi \frac{d\Psi_{EP}}{2\pi} f(\phi) f'(\psi) \cos m(\phi \psi)$ becomes

$$\begin{split} &\iiint d\phi d\psi rac{d\Psi_{EP}}{2\pi} f(\phi) f'(\psi) A(\phi) A'(\psi) \cos n(\psi-\phi) \ &= \langle \cos(n\psi)
angle \langle \cos(n\phi)
angle + \langle \sin(n\psi)
angle \langle \sin(n\phi)
angle \ &+ \iiint d\phi d\psi A(\phi) A'(\psi) \Sigma^{\infty}_{n'=1} v_n v'_{n'} (\cos(n-n')(\psi-\phi) + \cos(n+n')(\psi-\phi)) \end{split}$$

If ignoring all terms where n
eq n' ,

$$\begin{split} & \iiint d\phi d\psi \frac{d\Psi_{EP}}{2\pi} f(\phi) f'(\psi) A(\phi) A'(\psi) \cos n(\psi - \phi) \\ &= \langle \cos(n\psi) \rangle \langle \cos(n\phi) \rangle + \langle \sin(n\psi) \rangle \langle \sin(n\phi) \rangle + v_n v'_n + \\ & \iiint d\phi d\psi A(\phi) A'(\psi) v_n v'_n \cos 2n(\psi - \phi) \\ &= \langle \cos(n\psi) \rangle \langle \cos(n\phi) \rangle + \langle \sin(n\psi) \rangle \langle \sin(n\phi) \rangle \\ &+ v_n v'_n (1 + \langle \cos(2n\psi) \rangle \langle \cos(2n\phi) \rangle + \langle \sin(2n\psi) \rangle \langle \sin(2n\phi) \rangle) \end{split}$$

Finally, $v_n v'_n = \frac{\langle \cos n(\psi - \phi) \rangle - \langle \cos(n\psi) \rangle \langle \cos(n\phi) \rangle - \langle \sin(n\psi) \rangle \langle \sin(n\phi) \rangle}{1 + \langle \cos(2n\psi) \rangle \langle \cos(2n\phi) \rangle + \langle \sin(2n\psi) \rangle \langle \sin(2n\phi) \rangle}$

Merge run-by-run measurements

• Mean value $\mu_{merge} = \frac{\Sigma_{cases} \mu_{cases} N_{cases}}{\Sigma_{cases} N_{cases}} \qquad (N_{case} \text{ is the number of } J/\psi \text{ track pairs in one case.})$

• In the discussion above, all uncertainties have been corrected into correlation-by-correlation case. So when run-by-run measurements are merged, all the measurement should be considered as correlation-by-correlation measurements.

