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➔ Evolution of DNNs for jet identification 

❖ a deep overview of gained experiences from the prior 
developments 

➔ Transformer models for jets 

❖ how to adapt Transformer networks to jet physics? 

❖ advances & application examples 

❖ future insights

This talk will cover
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Jets in particle physics
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Jets are collinear sprays of particles initiated by quark/gluons

parton 
showering hadronization

hadronic 
decay ⇒ stable hadrons

raw data from tracker & calorimeter 
→ reconstruct to particle records (particle-

flow candidates in CMS) to cluster jets

Jet identification (jet tagging): identify the origin of the jet
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Question: How to design a most performant jet NN?
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➔ This is a highly physics-ML interdisciplinary subject

original of the 
jet?

other jet 
properties?

η

ϕ

research objective: 
design a most performant jet NN
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Evolution of jet NNs
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feed-forward NN 1D/2D CNN, RNN graph NN, Transformers(high-level inputs) (low-level inputs)
(low-level inputs)

Shallow networks

✦ Using high-level features 
directly as input to a 
shallow network

??
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Evolution of jet NNs
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feed-forward NN 1D/2D CNN, RNN graph NN, Transformers(high-level inputs) (low-level inputs)
(low-level inputs)

Shallow networks

✦ Using high-level features 
directly as input to a 
shallow network

………

 particles, ordered by pT

fe
at

ur
es

Particles

1D CNN
(10 layers)

………

 SVs, ordered by SIP2D

fe
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Fully 
connected

(1 layer)

Output

1D CNN
(14 layers)

filter

filter

✦ Using particle-level features 
✦ Input data structure determines 

the type of networks

• jet as a image (fixed-grid data 
structure) 

• jet as a sequence → 1D CNN or 
RNN

Deep NN with low-level inputs

Typical CNN Typical RNN

??
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Evolution of jet NNs
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feed-forward NN 1D/2D CNN, RNN graph NN, Transformers(high-level inputs) (low-level inputs)
(low-level inputs)

Shallow networks

✦ Using high-level features 
directly as input to a 
shallow network
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✦ Using particle-level features 
✦ Input data structure determines 

the type of networks

• jet as a image (fixed-grid data 
structure) 

• jet as a sequence → 1D CNN or 
RNN

Deep NN with low-level inputs

Typical CNN Typical RNN

??

deficiency:  
has information loss, 
brings data sparsity

deficiency:  
introduce artificial order 
hard to capture long-term dependencies
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Evolution of jet NNs
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feed-forward NN 1D/2D CNN, RNN graph NN, Transformers(high-level inputs) (low-level inputs)
(low-level inputs)

Shallow networks

✦ Using high-level features 
directly as input to a 
shallow network

………
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✦ Using particle-level features 
✦ Input data structure determines 

the type of networks

• jet as a image (fixed-grid data 
structure) 

• jet as a sequence → 1D CNN or 
RNN

Deep NN with low-level inputs

??

Graph structure

✦ Graph neural networks
• treat a jet as a permutational-

invariant set of particles (or, point 
cloud) 

• build “edges” between particles
✦ Transformer networks

Typical graph

• modern architectural designs - act like 
a “fully connected graph”

Typical CNN Typical RNN
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Set/graph representations of jets

8

➔ View input particles as a set/graph 
❖ guarantee the permutational invariance of input particles 
❖ a special stage in jet network developments 

➔ The edges of graph: enable communication between pairs of particles

[image from link]

https://indico.cern.ch/event/1051967/contributions/4550543/attachments/2331603/3973494/GNN_HEP_H_Qu.pdf
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Set/graph representations of jets

8

➔ View input particles as a set/graph 
❖ guarantee the permutational invariance of input particles 
❖ a special stage in jet network developments 

➔ The edges of graph: enable communication between pairs of particles

[image from link]

LundNet: F. Dreyer et al. 
JHEP 03 (2021) 052

LorentzNet:  S. Gong et al. JHEP 07 (2022) 030 
ParT: H. Qu et al. arXiv:2202.03772, ICML 2022 
CPT : S. Qiu et al. PRD 107 (2023) 11, 114029 
HMPNet : F. Ma et al. PRD 108 (2023) 7, 072007

ABCNet: V. Mikuni et al. EPJC 2020; 135(6): 463
ParticleNet: H.Qu et al. PRD 101, 056019 (2020)

PFN/EFN: P. Komiske et al. 
JHEP 01 (2019) 121

https://indico.cern.ch/event/1051967/contributions/4550543/attachments/2331603/3973494/GNN_HEP_H_Qu.pdf
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1810.05165
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://doi.org/10.1007/JHEP03(2021)052
https://arxiv.org/abs/1902.08570
https://link.springer.com/article/10.1007/JHEP07(2022)030
https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/2203.05687
https://arxiv.org/abs/2210.13869
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Transformer × jet network?
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Transformers with built-in IRC safety in particle physics

Congqiao Li (Peking University) 8 November, 2023ML4Jets 2023

ML4Jets 2023

Particle 1 Particle 2 Particle 3

K

2. Calculate  Attention(Q, K, V ) = softmax( QTK
d )V

Revisiting dot-product attention

5

Token features  
(at some layer)

Linear

Q
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V V1 V2 V3

new feature for particle ∑
j

wjVj = i

Particle   
(repeat for each 1…N)

i

QT
i

QT
i K/ d

1. Derive Q, K, V

w1 w2 w3
∑

j
wj = 1

softmax

➔ Transformer (Google, 2017): unifies the 
architecture designs across the tasks 
❖ initiated in NLP, then extended to 

computer vision (started by ViTs) 

➔ Benefits: 
❖ efficiently learn relations of tokens 

❖ scale well on larger datasets 

❖ → achieve new state-of-the-art 
performance

Each token (particle) talks to every other token
Same prototype across the fields

Attention in Transformers
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ParT: better adapt Transformers to jet data

10

➔ Transformer tailored for particle physics (e.g. jet tagging) 
❖ featuring its “attention bias” that embed pairwise features respecting 

different levels of Lorentz symmetry
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Particle Transformer for Jet Tagging

second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix Y is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same Y is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-
teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging

task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an

and many other 
possible pairwise 

features…
Injection of (physics-inspired) pairwise features to  

“bias” the dot-product self-attention

H. Qu, CL, S. Qian. ICML 2022

https://arxiv.org/abs/2202.03772
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Backgrounds on symmetries and inductive biases
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➔ Inherent symmetries of the dataset → inductive bias to improve NN performance

pT η ⋯

Translation 
(of image patches)

Permutation (of particle records)

η

ϕ

z boost

x-y 
rotation

(CNN’s advantage)

η-φ rotation

x boost

➔ Jets have symmetries under permutations & 
Lorentz transformations

Discussion in PRD 109, 056003 (2024)

Lorentz transformation

https://doi.org/10.1103/PhysRevD.109.056003
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The ParT “engineering blueprint”
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Plain Transformer Inductive bias  
for particle-format data

Transformers with built-in IRC safety in particle physics

Congqiao Li (Peking University) 8 November, 2023ML4Jets 2023

ML4Jets 2023
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Particles as tokens Permutation invariance: no particles’ positional embedding 
Lorentz invariance: pairwise masses injected as attentive bias

(solution is close to AlphaFold)
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Advances in Transformer models
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1. Better scaling capability with model & dataset sizes

Dataset size scaled up 
 JetClass: dataset reaching 100 M entries  
   - close to real experimental situations

performance improvements: ParT > ParticleNet

Model size scaled up 

Larger ParT model to build 
real jet taggers in CMS 
(Global Particle Transformer, 
GloParT)

H. Qu, CL, S. Qian. ICML 2022

https://arxiv.org/abs/2202.03772
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Advances in Transformer models
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1. Better scaling capability with model & dataset sizes

➔ ATLAS/CMS “flagship” small-R jet taggers have all switched to the Transformer 
architectures (with training dataset size reaches o(100M) level) 
❖ huge progress has been made from 2016 (early Run-2) to 2024 (mid-Run3) ! 

(rejection rate of c-jet & light-jet, for b-tagging)

ATL-FTAG-2023-01
Latest ATLAS tagger for small-R jets: 
Transformer-based GN2

CMS-DP-2024-066

Latest CMS tagger for small-R jets: 
Unified Particle Transformer (UParT)

x50 rejection on light-
jet background

https://cds.cern.ch/record/2866601
https://cds.cern.ch/record/2904702/files/DP2024_066.pdf
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Advances in Transformer models

➔ The ultimate goal: design a unified HEP model to analyze jets/events: 
❖ comprehensive phase space coverage 
❖ one model handling all tasks - multimodality 

➔ Engineering solutions: 
❖ self-supervised learning to learn jet representations 
❖ hybrid (multimodal) training across tasks: jet tagging, property regression, reconstruction/

generation… 
❖ Model pre-training followed by “fine-tuning” to downstream tasks

15

2. Building comprehensive / base / foundation HEP models

Masked Particle Modelling 
(SSL with Masked 
autoencoder (MAE) style)  
2401.13537

OmniJet-α 
(GPT-like, next-token prediction 
to learn jet properties) 
MLST, 5 035031 (2024)

p-jepa

see e.g. H. Qu’s talk

Sophon model 
(giant classifier for full jet 
phase space coverage)

(jet embedding prediction)

2405.12972

Recent work examples:

https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2403.05618
https://indico.ihep.ac.cn/event/24660/attachments/86769/111425/FM_IHEP_20241230_H_Qu.pdf
https://arxiv.org/abs/2405.12972
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Advances in Transformer models
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2. Building comprehensive / base / foundation HEP models

Mature experimental solutionsGloParT 3: Comprehensive performance review & Upgrade notes

CMS Tagger dev working group October, 2024

7. Finalisation of jet categories

94

bb, cc, ss, qq, (bc)+, (bc)–, bs, 
(cs)+, (cs)–, gg, 

γγ, ee, μμ, τhτe, τhτμ, τhτh 

W
H

W

?
?
?
?

cscs, csqq, qqqq, 
csc, css, csq, qqc, qqs, qqq, 

csev, qqev, csμv, qqμv, csτev, 
qqτev, csτμv, qqτμv, csτhv, qqτhv

bbbb, bbcc, bbss, bbqq, cccc, ccss, ccqq, ssss, ssqq, qqqq, 
bbb, bbc, bbs, bbq, ccb, ccc, ccs, ccq, ssb, ssc, sss, ssq, qqb, 

qqc, qqs, qqq, 
bbee, bbμμ, bbe, bbμ, bee, bμμ, bbτhτe, bbτhτμ, bbτhτh, bτhτe, 

bτhτμ, bτhτh, ccee, ccμμ, cce, ccμ, cee, cμμ, ccτhτe, ccτhτμ, 
ccτhτh, cτhτe, cτhτμ, cτhτh, ssee, ssμμ, sse, ssμ, see, sμμ, ssτhτe, 

ssτhτμ, ssτhτh, sτhτe, sτhτμ, sτhτh, qqee, qqμμ, qqe, qqμ, qee, 
qμμ, qqτhτe, qqτhτμ, qqτhτh, qτhτe, qτhτμ, qτhτh 

Z
H

Z

?
?
?
?

bb, cc, b, c, others

QCD

q (b/c)
q̄ (b̄/c̄)

g

…

H0,± ?

?

GloParT 3 categorization

H0,±→x1x2 (2-prong) like
(15 classes)

H→W(*)W(*) like
(19×3 classes)

H→Z(*)Z(*) like
(74×3 classes)

bWcs, bWqq, bWc, bWs, bWq, bWev, 
bWμv, bWτev, bWτμv, bWτhv, 

    Wcs, Wqq, Wev, Wμv, Wτev, Wτμv, 
Wτhv

b

t
?
?

W

t→bW like
(17×2 classes)

(5 classes)

γγbb, γγcc, γγss, γγqq, γγbc, γγcs, γγbq, γγcq, γγsq, 
γγgg, γγee, γγmm, γγτhτe, γγτhτμ, γγτhτh, 

    γγb, γγc, γγs, γγq, γγg, γγe, γγm, γγτe, γγτμ, γγτh, 
    γbb, γcc, γss, γqq, γbc, γcs, γbq, γcq, γsq, γgg, 

γee, γmm, γτhτe, γτhτμ, γτhτh

H0,±→γγx1x2 like
(40 classes)

H

h0,± ?
?

γ
γh′ 0

H→WW* like
H→WW like

H→W*W(*) like

H→ZZ* like
H→ZZ like

H→Z*Z(*) like

t→bW+ like

t→bW– like

gq

q (b/c)

g

…

Global Particle Transformer (GloParT) in the CMS experiment 
(the giant jet model for tagging + mass regression) 
 - Sophon’s CMS realization

universal jet-origin identification 
solution (for all quark flavours and 
charges) for CEPC

H Liang, Y Zhu et al. PRL. 132, 221802

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.221802
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Future insights: boundary of jet identification?
➔ The statistical essence of classification via DNN is to let the network to fit the underlying pdf ratios: 

 
❖ better DNN architectural design + training strategy → better estimation of pdfs 

➔ We have seen consistent improvements over the past 5 years, but there is no sign that boundaries are 
reached 

➔ Understanding the boundary is crucial! (e.g. 2411.02628)

ρA(x)/pB(x)
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ATL-PHYS-PUB-2023-021
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 (13 TeV)

CMS
Simulation 

DeepAK8
DeepAK8-MD
BEST
double-b

Higgs boson vs. QCD multijet
| < 2.4gen

η < 1500 GeV, |gen
T

1000 < p
 < 140 GeVAK8

SD90 < m

CMS-PAS-BTV-22-001

JINST 15 (2020) P06005

Better

Better
Better

Consistent improvements seen; no boundaries reached

https://arxiv.org/abs/2411.02628
https://cds.cern.ch/record/2866601
https://cds.cern.ch/record/2866276
https://arxiv.org/abs/2004.08262
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Future of analyzing hadronic events?

➔ Jet data / hadronic events are more complex 
objects to analyze than thought 
❖ not easy to touch the boundaries 

➔ Small improvements have a large impact in the 
scientific result 
❖ popular metrics are classification accuracy/AUC, 

where usually small improvement is seen, but what 
is crucial is the “background rejection rate” ( ) 

❖ i.e. at the working point of  ~ 0.5, but 
 ~ 1e-3 

❖ FPR suppressed by ×2  
  → discovery sensitivity ×√2 

➔ Capabilities to analyze hadronic-final-state 
processes (at the LHC) have been underestimated

1/ϵB

TPR (ϵS)
FPR (ϵB)
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Here is the working 
point of our 
concerns 
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Conclusion and outlook

➔ Transformers have revolutionized the entire AI field, including their 
applications in HEP-ex and jet physics 
❖ jet tagging performance is brought to a new level 
‣ ParT is a baseline model (Transformer arch w/ proper inductive biasing) 

‣ engineering experiences are acquired and overviewed in this talk 

➔ Next up? 
❖ Improving Transformers? 
‣ efficient Transformers (address the o(N²) computation cost in self-attention) 

‣ better inductive biasing (e.g. relaxing pairwise embedding: L-GATr 2405.14806, 2411.00446; 
new embedding solution: MIParT CPC. 49 (2025) 1, 013110 ) 

❖ Better pre-training of jet Transformer models? 
‣ Current solutions are very open (self-/semi-/fully-supervised? variation of training 

targets)  
—  always note that improving jet-analysis performance is the only criterion! 

‣ Need insights from the AI experts!
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https://arxiv.org/abs/2405.14806
https://arxiv.org/abs/2411.00446
https://arxiv.org/abs/2407.08682
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Backup

20
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Statistical essence of jet tagging problem
➔ Question: where is the limit of jet tagging?

p1(x)

x0

The optimal 
network

class 1

class 2

High-dimensional 
jet phase spaces

class 1
class 2
p2(x)

η

ϕ

✤ Ideal classifier network  
results in  

 

✤ It is a direct estimation of  

✤ The network capacity decides 
how close the estimation is

g1 : g2 : . . . = p1(x0) : p2(x0) : . . .

p

an input jet

➔ Answer: the probability density ratio of two classes provides the optimal tagging
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A glance into fine-tuning spirits

22

train a BDT or NN

customized scores!  
(optimized for analysis)

the pre-trained 
Transformer 

network

use the 
hidden layer

train an NN 
equivalently, this means to replace then 

retrain the last layer

customized scores!  
(optimized for analysis)

the pre-trained 
Transformer 

network

This is a fine-tuning approach (specifically, transfer learning) 
in its equivalent form



Transformers for jet identification in particle physics

Congqiao Li (Peking University) 11 January, 2025量⼦计算和⼈⼯智能与⾼能物理交叉研讨会

量⼦计算和⼈⼯智能与⾼能物理交叉研讨会

CMS’s path to develop Global Particle Transformer
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11Why not just look everywhere?

(a) There are a lot of places to look

A ! BC
B = SM B = BSM B = BSM B = BSM

e µ ⌧ q/g b t � Z/W H BSM ! SM1 ⇥ SM1 BSM ! SM1 ⇥ SM2 BSM ! complex

e Z
0

/R /R LQ LQ LQ L
⇤

L
⇤

L
⇤

µ Z
0

/R LQ LQ LQ L
⇤

L
⇤

L
⇤

⌧ Z
0

LQ LQ LQ L
⇤

L
⇤

L
⇤

q/g Z
0

W
0

T
0

Q
⇤

Q
⇤

Q
0

C
=

S
M b Z

0
W

0
Q

⇤
Q

⇤
B

0 Group II Group III Group IV
t Z

0
Q

⇤
T
0

T
0 (Table 2) (Table 3) (Table 4)

� H H ZKK

Z/W Group I H H
±
/A

H H

C
=

B
S
M

B
S
M

!
S
M

1
⇥
S
M

1

Group V
(Table 5)

Group VI
(Table 6)

Group VII
(Table 7)

C
=

B
S
M

B
S
M

!
S
M

1
⇥
S
M

2

Group VIII
(Table 8)

Group IX
(Table 9)

C
=

B
S
M

B
S
M

!
co
m
p
le
x

Group X
(Tables 10 and 11)

Table 1: Top-level organization of BSM particle A by its two-body decays into B and C, showing
examples of theoretical motivations for each case. Z

0 and W
0 denote additional gauge bosons, /R

represents R-parity violating SUSY, L⇤
, Q

⇤ are excited leptons and quarks, respectively, and T
0 and

B
0 are a vector-like top and bottom quarks, respectively. The symbol ZKK denotes Kaluza-Klein

excitation of SM Z. The SM case in the upper left box is reproduced from Ref. [14].

quarks, respectively. ZKK denotes Kaluza-Klein excitation of SM Z.
We categorize the rest of Table 1 in terms of nine additional subtables, which are denoted by

Roman numerals II through X, and present each table in the sequential order. Note that generally
we suppress electric charges of each SM particle and focus on the diversity of decay products,
although we mention a few interesting examples of such kinds. Similarly we will not distinguish
light jets from gluon and generically denote them as j but occasionally we distinguish them for some
interesting decays. We denote the bottom quark, and top quark by b/b̄ and by t/t̄, respectively.
The V represents SM gauge bosons Z and W

± and H is a SM Higgs boson. Throughout the
manuscript, a primed particle X

0 represents a BSM particle, whose properties are similar to the
corresponding SM particle X.

Table 2 shows example for A ! BC, where A and B are BSM particles and C is a SM particle,
which is the Group II in Table 1. We consider two similar SM particles in theB decays. For example,
the jj denotes B decays to two quarks (qq̄, qq̄0 or qq), while `` includes both two opposite-charged

3

Many

ManyConsider just the di-object 
search for resonant A → B C
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• What is ? - the “differential cross section” of a process  on 
very high-dim space 

• discriminating process A vs. B: estimate  as best as 
we can 

• need a model to cover a variety of processes 

p A

pA(x)/pB(x)

A, B, C, D, . . . .

Good probability 
density estimators

Generalization 
ability

J.Kim et al. JHEP 
04 (2020) 30 
1907.06659

Model scaling up

Philosophy to develop Global Particle Transformer (GloParT) in CMS

• one upstream pre-training, broad downstream applicability
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https://arxiv.org/abs/1907.06659

