

Transformers for jet identification in particle physics

Congqiao Li (李聪乔), Peking University

量子计算和人工智能与高能物理交叉研讨会·中国科学技术大学 11 January, 2025

1

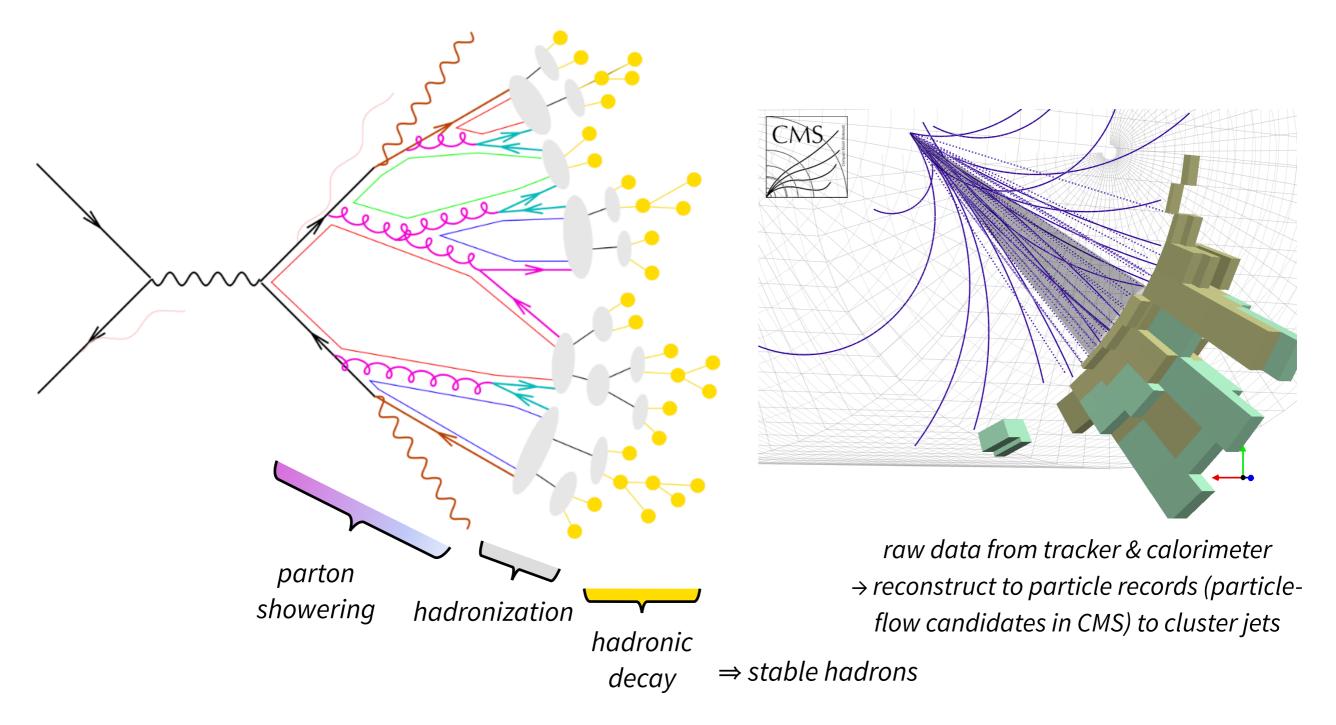
Outline

This talk will cover

- → Evolution of DNNs for jet identification
 - a deep overview of gained experiences from the prior developments
- → Transformer models for jets
 - how to adapt Transformer networks to jet physics?
 - advances & application examples
 - future insights

Jets in particle physics

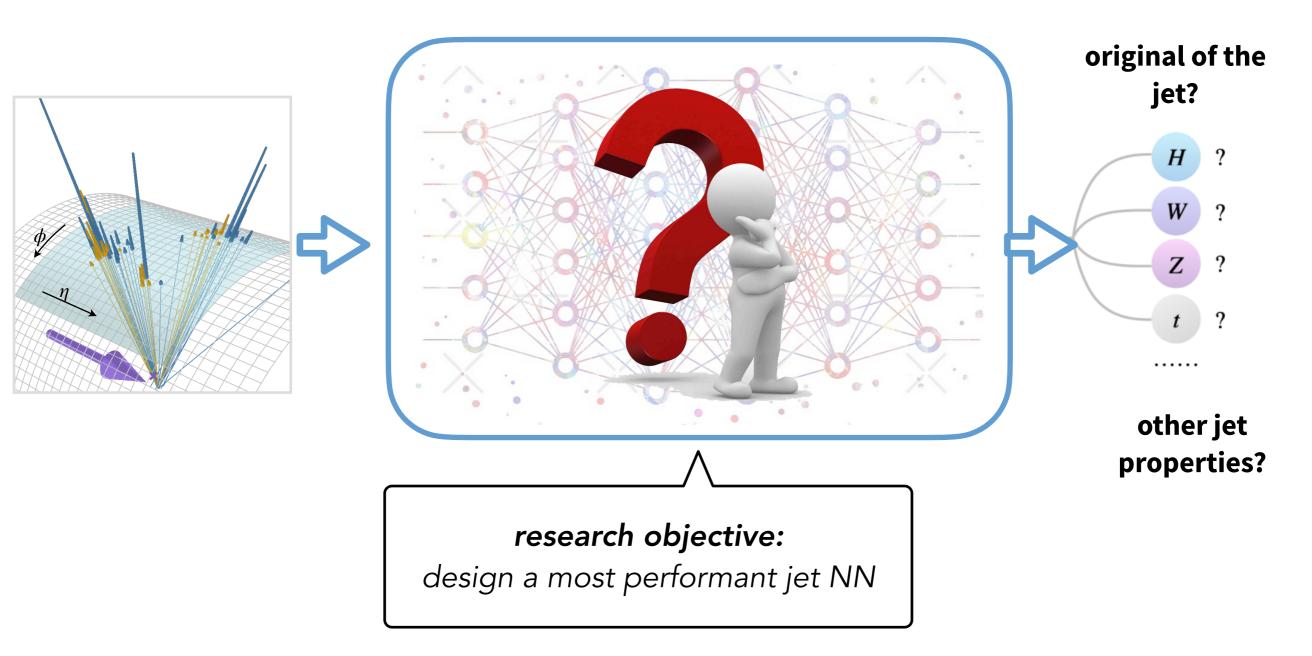
Jets are collinear sprays of particles initiated by quark/gluons



Jet identification (jet tagging): identify the origin of the jet

Question: How to design a most performant jet NN?

→ This is a highly physics-ML interdisciplinary subject



feed-forward NN (high-level inputs) ··· ··· 1D/2D CNN, RNN (low-level inputs) ··· ·· graph NN, Transformers ··· ·· ??

(low-level inputs)

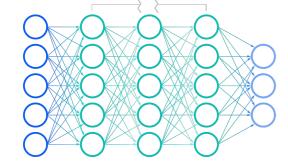


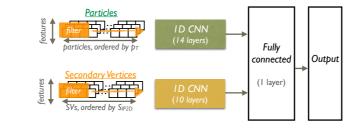
Shallow networks

 Using high-level features directly as input to a shallow network

feed-forward NN (high-level inputs) •••••••**1D/2D CNN, RNN** (low-level inputs) ••••••

graph NN, Transformers (low-level inputs) ??



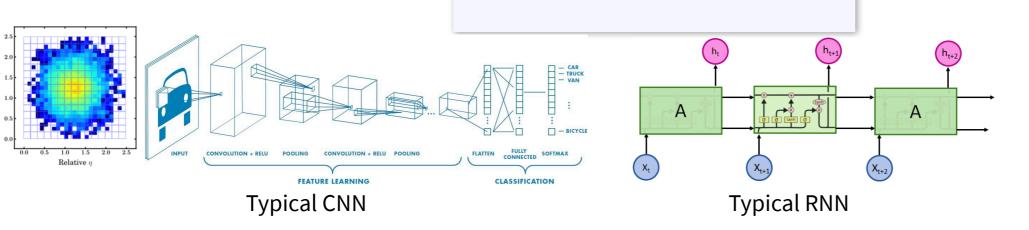


Shallow networks

 Using high-level features directly as input to a shallow network

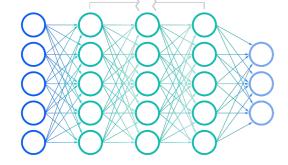
Deep NN with low-level inputs

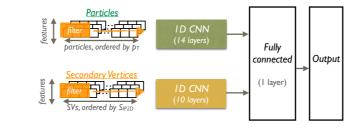
- ✦ Using particle-level features
- Input data structure determines the type of networks
 - jet as a image (fixed-grid data structure)
 - jet as a sequence → 1D CNN or RNN



feed-forward NN (high-level inputs) •••••••1D/2D CNN, RNN (low-level inputs) ••••••• graph N

graph NN, Transformers (low-level inputs) ??



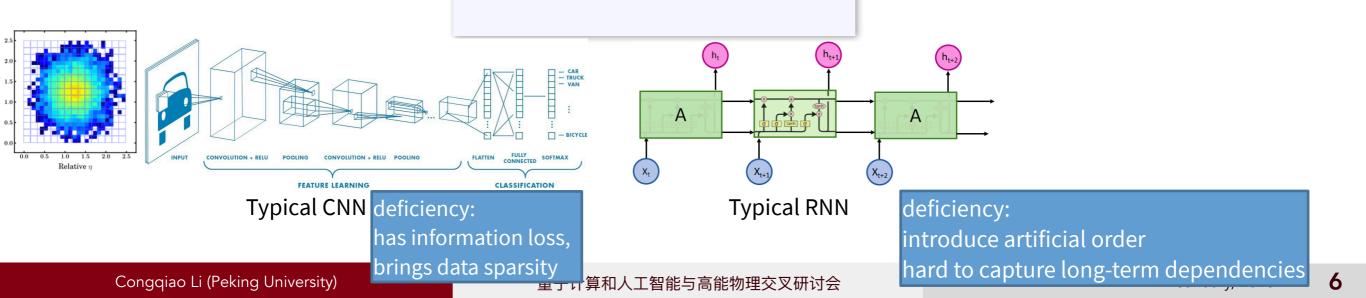


Shallow networks

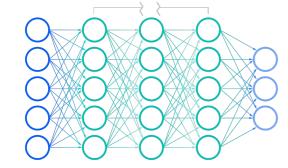
 Using high-level features directly as input to a shallow network

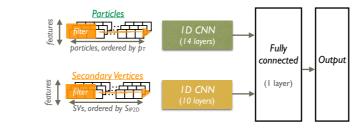
Deep NN with low-level inputs

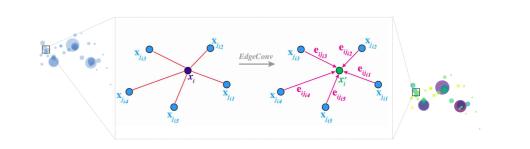
- Input data structure determines the type of networks
 - jet as a image (fixed-grid data structure)
 - jet as a sequence → 1D CNN or RNN



feed-forward NN (high-level inputs) ••• ••• 1D/2D CNN, RNN (low-level inputs)







graph NN, Transformers · · · · · ??

(low-level inputs)

Shallow networks

 Using high-level features directly as input to a shallow network

Deep NN with low-level inputs

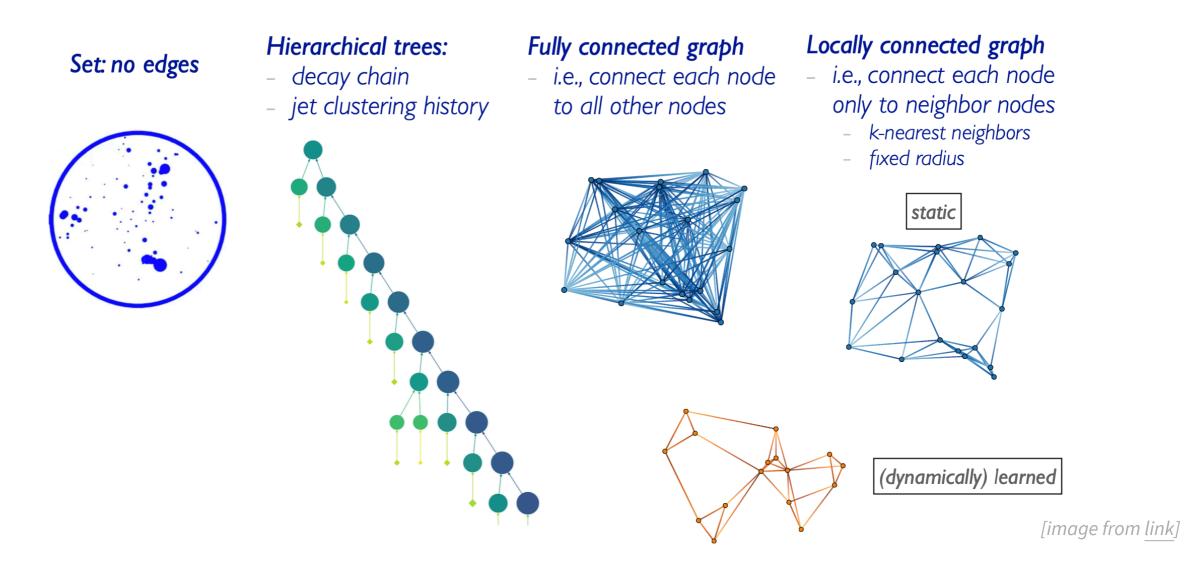
- Using particle-level features
- Input data structure determines the type of networks
 - jet as a image (fixed-grid data structure)
 - jet as a sequence → 1D CNN or RNN

Graph structure

- ✦ Graph neural networks
 - treat a jet as a permutationalinvariant set of particles (or, point cloud)
 - build "edges" between particles
- ✦ Transformer networks
 - modern architectural designs act like a "fully connected graph"

Set/graph representations of jets

- → View input particles as a set/graph
 - guarantee the *permutational invariance* of input particles
 - a special stage in jet network developments
- → The **edges** of graph: enable communication between pairs of particles



Set/graph representations of jets

- → View input particles as a set/graph
 - guarantee the permutational invariance of input particles
 LorentzNet: <u>S. Gong et al. JHEP 07 (2022) 030</u>
 - a special stage in jet network de
- → The **edges** of graph: enable com

Set: no edges

decay chainjet clustering history

Fully connected graph

ParT: <u>H. Qu et al. arXiv:2202.03772, ICML 2022</u>

CPT: S. Qiu et al. PRD 107 (2023) 11, 114029

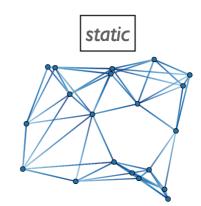
HMPNet : F. Ma et al. PRD 108 (2023) 7, 07200

i.e., connect each node to all other nodes

Locally connected graph

particles

- i.e., connect each node only to neighbor nodes
 - k-nearest neighbors
 - fixed radius



(dynamically) learned

[image from link]

ParticleNet: <u>H.Qu et al. PRD 101, 056019 (2020)</u> ABCNet: <u>V. Mikuni et al. EPJC 2020; 135(6): 463</u> 11 January, 2025

PFN/EFN: P. Komiske et al.

JHEP 01 (2019) 121

量子计算和人工智能与高能物理交叉研讨会

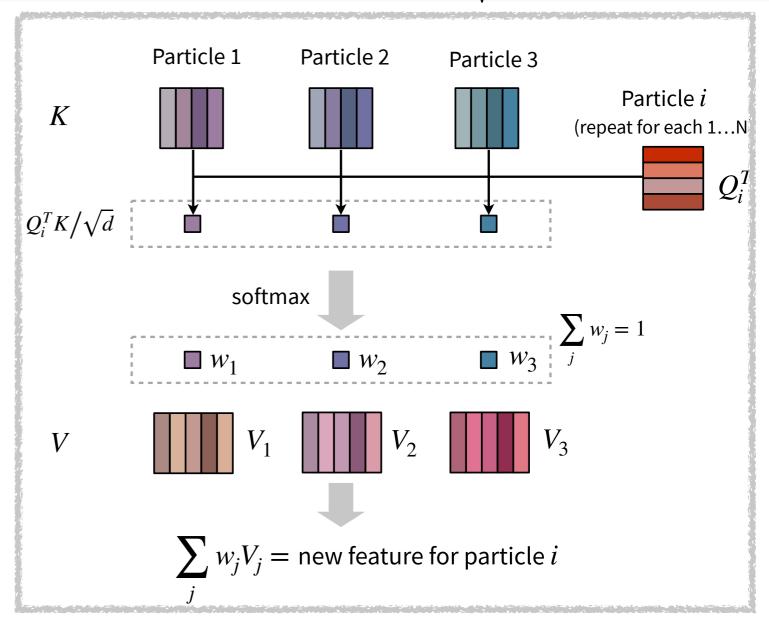
LundNet: F. Drever et al.

JHEP 03 (2021) 052

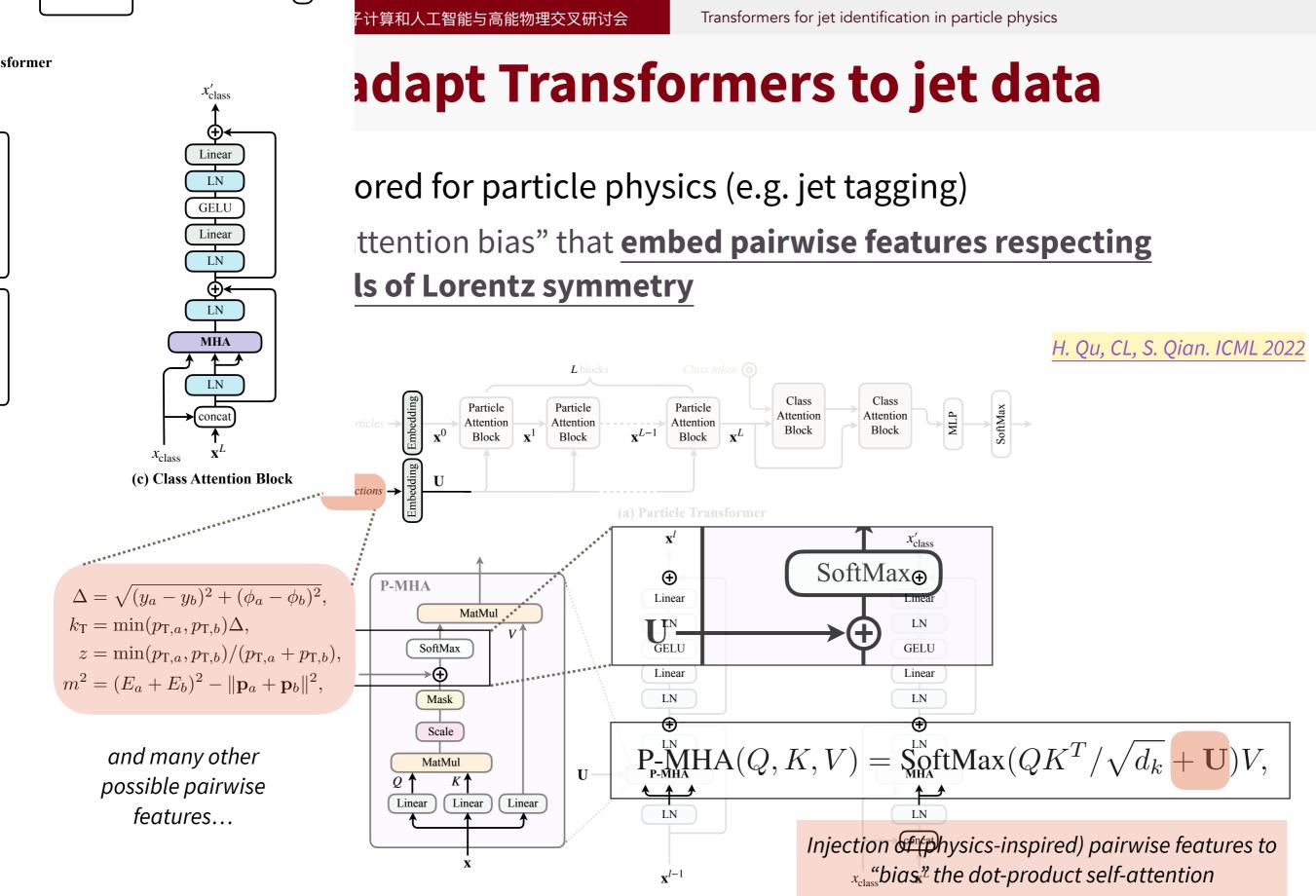
Transformerk,* jet network?

Attention(Q, K, V) = softmax $\left(\frac{Q^T K}{A t t e}\right) V$

- → Transformer (Google, 2017): unifies the architecture designs across the tasks
 - initiated in NLP, then extended to computer vision (started by ViTs)
- → Benefits:
 - efficiently learn relations of tokens
 - scale well on larger datasets
 - ♦ achieve new state-of-the-art performance



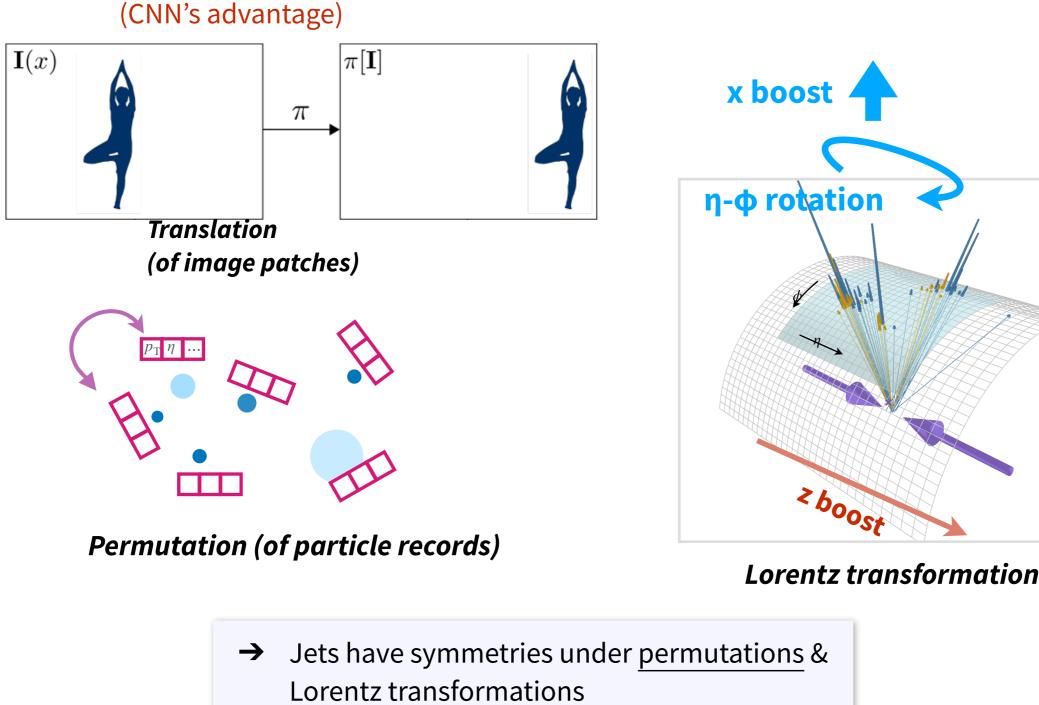
Edeffetoken (particle) talks to every other[®] token^{r, 2023} Same prototype across the fields



) Particle Attention Block

Backgrounds on symmetries and inductive biases

→ Inherent symmetries of the dataset → inductive bias to improve NN performance

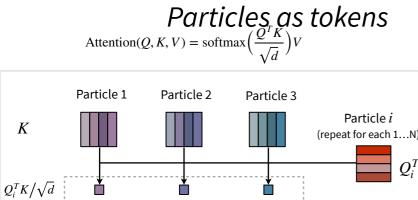


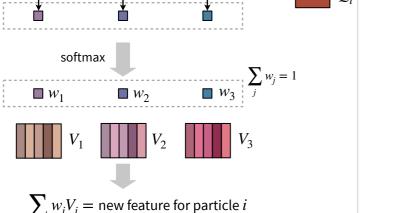
Discussion in PRD 109, 056003 (2024)

х-у

rotation

The ParT "engineering blueprint"





ML4Jets 2023

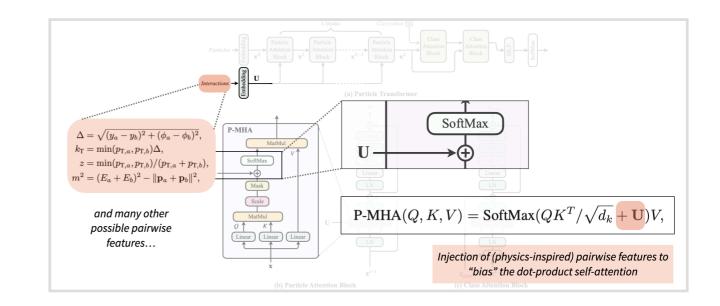
K

V

8 November, 2023

Inductive bias for particle-format data

Permutation invariance: no particles' positional embedding *Lorentz invariance: pairwise masses injected as attentive bias* (solution is close to AlphaFold)



量子计算和人工智能与高能物理交叉研讨会

1. Better scaling capability with model & dataset sizes

	All cla Accuracy	sses AUC	$H ightarrow b ar{b}$ Rej _{50%}	$H ightarrow c ar{c}$ ${ m Rej}_{50\%}$	H ightarrow gg Rej $_{50\%}$	$H \rightarrow 4q$ Rej _{50%}	$H ightarrow \ell u q q'$ Rej _{99%}	t ightarrow bqq' Rej $_{50\%}$	$t ightarrow b \ell u$ Rej _{99.5%}	W ightarrow qq' Rej _{50%}	$Z ightarrow q ar q$ Rej $_{50\%}$
ParticleNet (2 M)	0.828	0.9820	5540	1681	90	662	1654	4049	4673	260	215
ParticleNet (10 M)	0.837	0.9837	5848	2070	96	770	2350	5495	6803	307	253
ParticleNet (100 M)	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT (2 M)	0.836	0.9834	5587	1982	93	761	1609	6061	4474	307	236
ParT (10 M)	0.850	0.9860	8734	3040	110	1274	3257	12579	8969	431	324
ParT (100 M)	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402

H. Qu, CL, S. Qian. ICML 2022

Dataset size scaled up

JetClass: dataset reaching 100 M entries

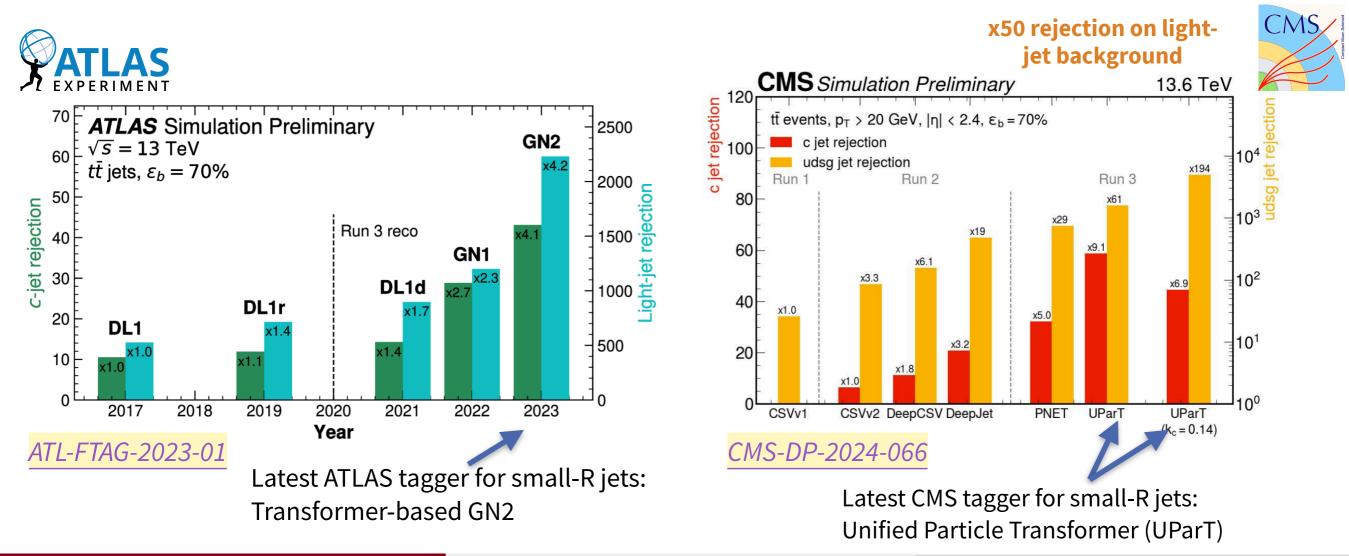
- close to real experimental situations

performance improvements: ParT > ParticleNet

		ParT-lite	ParT-B	ParT-L (GloParT)
Model size scaled up Larger ParT model to build real jet taggers in CMS	Input embed. dim. Pairwise feat. embed. dim. Transformer dim. Number of heads Fully-connected layer dim.	(64, 256, 64) (32, 32, 32, 8) 64 8 (512, 316)	(128, 512, 128) (64, 64, 64, 8) 128 8 (1024, 316)	(256, 1024, 256) (128, 128, 128, 16) 256 16 (1024, 316)
(Global Particle Transformer, GloParT)	Initial LR Batch size Epochs	6.75×10^{-3} 768 30	4×10^{-3} 512 50	2×10^{-3} 256 50

1. Better scaling capability with model & dataset sizes

- → ATLAS/CMS "flagship" small-R jet taggers have all switched to the Transformer architectures (with training dataset size reaches o(100M) level)
 - huge progress has been made from 2016 (early Run-2) to 2024 (mid-Run3) ! (rejection rate of c-jet & light-jet, for b-tagging)

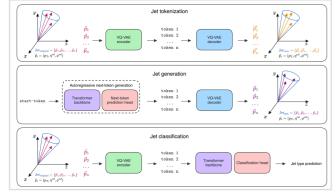


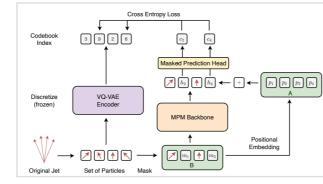
2. Building comprehensive / base / foundation HEP models

→ The ultimate goal: design a unified HEP model to analyze jets/events:

- comprehensive phase space coverage
- one model handling all tasks multimodality
- → Engineering solutions:
 - self-supervised learning to learn jet representations
 - hybrid (multimodal) training across tasks: jet tagging, property regression, reconstruction/ generation...
 - Model pre-training followed by "fine-tuning" to downstream tasks

Recent work examples:

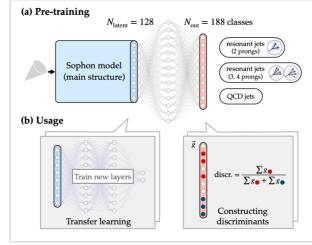




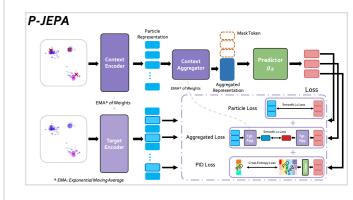
OmniJet-α

(GPT-like, next-token prediction to learn jet properties) <u>MLST, 5 035031 (2024)</u>

Masked Particle Modelling (SSL with Masked autoencoder (MAE) style) 2401.13537



Sophon model (giant classifier for full jet phase space coverage) 2405.12972

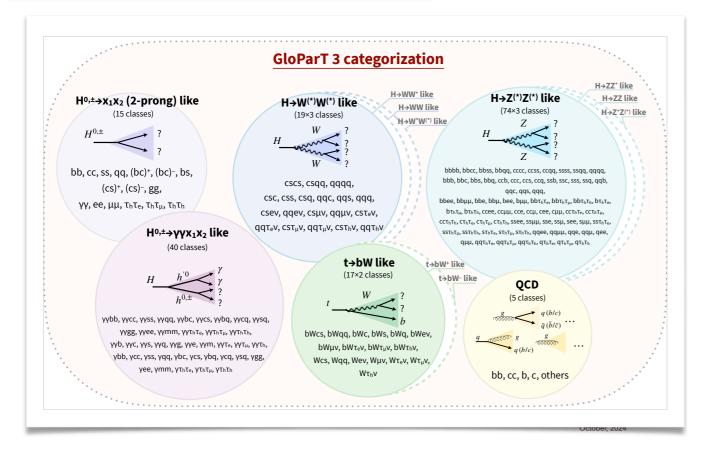


p-jepa (jet embedding prediction) see e.g. <u>H. Qu's talk</u>

Congqiao Li (Peking University)

2. Building comprehensive / base / foundation HEP models

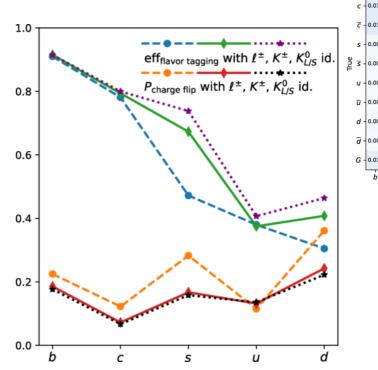
Mature experimental solutions

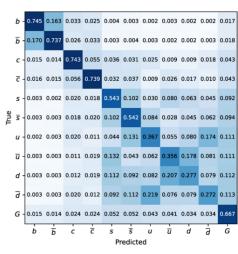


Global Particle Transformer (GloParT) in the CMS experiment

(the giant jet model for tagging + mass regression)

- Sophon's CMS realization



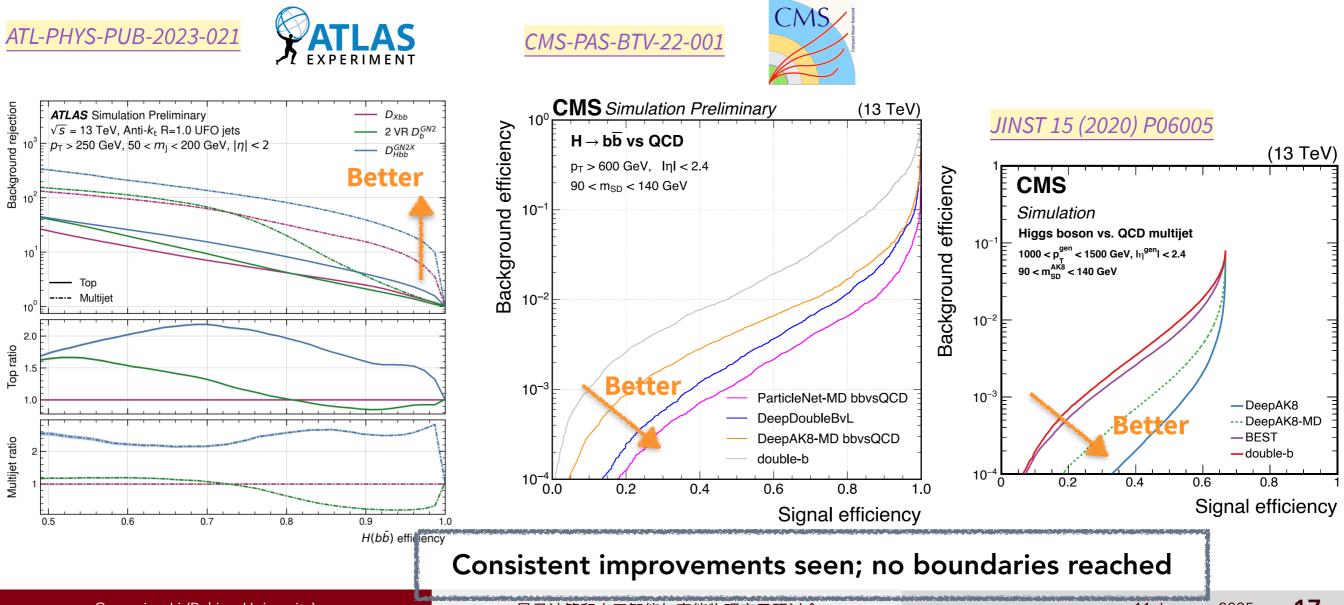


universal jet-origin identification solution (for all quark flavours and charges) for CEPC

H Liang, Y Zhu et al. PRL. 132, 221802

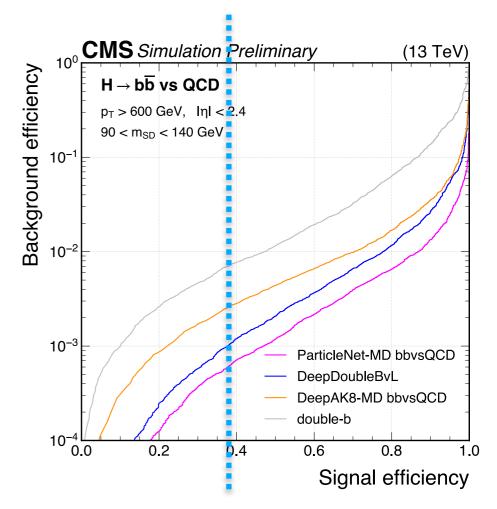
Future insights: boundary of jet identification?

- → The statistical essence of classification via DNN is to let the network to fit the underlying pdf ratios: $\rho_A(x)/p_B(x)$
 - ♦ better DNN architectural design + training strategy → better estimation of pdfs
- → We have seen consistent improvements over the past 5 years, but there is no sign that boundaries are reached
- → Understanding the boundary is crucial! (e.g. <u>2411.02628</u>)



Future of analyzing hadronic events?

- → Jet data / hadronic events are more complex objects to analyze than thought
 - not easy to touch the boundaries
- → Small improvements have a large impact in the scientific result
 - ✤ popular metrics are classification accuracy/AUC, where usually small improvement is seen, but what is crucial is the "background rejection rate" ($1/\epsilon_B$)
 - * i.e. at the working point of TPR $(\epsilon_S) \sim 0.5$, but FPR $(\epsilon_B) \sim 1e-3$
 - ◆ FPR suppressed by ×2
 → discovery sensitivity ×√2
- → Capabilities to analyze hadronic-final-state processes (at the LHC) have been underestimated



Here is the working point of our concerns

Conclusion and outlook

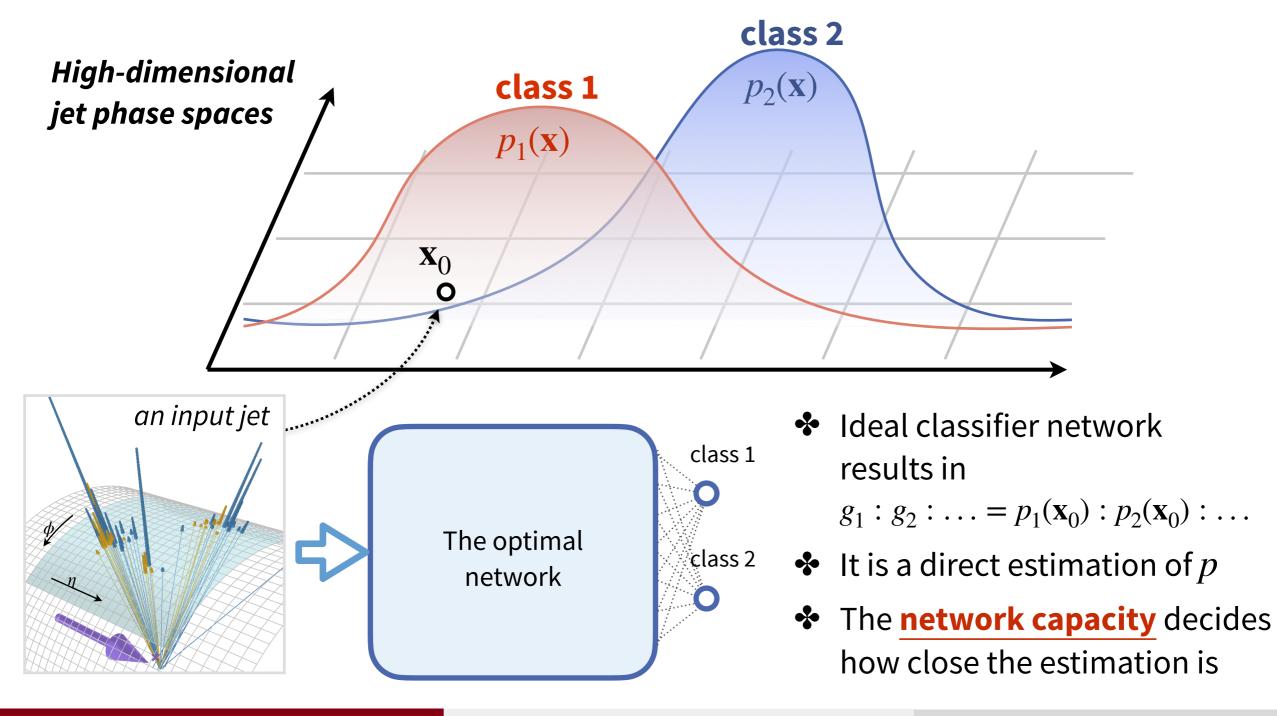
- ➔ Transformers have revolutionized the entire AI field, including their applications in HEP-ex and jet physics
 - jet tagging performance is brought to a new level
 - ParT is a baseline model (Transformer arch w/ proper inductive biasing)
 - engineering experiences are acquired and overviewed in this talk
- \rightarrow Next up?
 - Improving Transformers?
 - efficient Transformers (address the o(N²) computation cost in self-attention)
 - better inductive biasing (e.g. relaxing pairwise embedding: L-GATr <u>2405.14806</u>, <u>2411.00446</u>; new embedding solution: MIParT <u>CPC. 49 (2025) 1, 013110</u>)
 - Better pre-training of jet Transformer models?
 - Current solutions are very open (self-/semi-/fully-supervised? variation of training targets)
 - always note that improving jet-analysis performance is the only criterion!
 - Need insights from the AI experts!

Backup

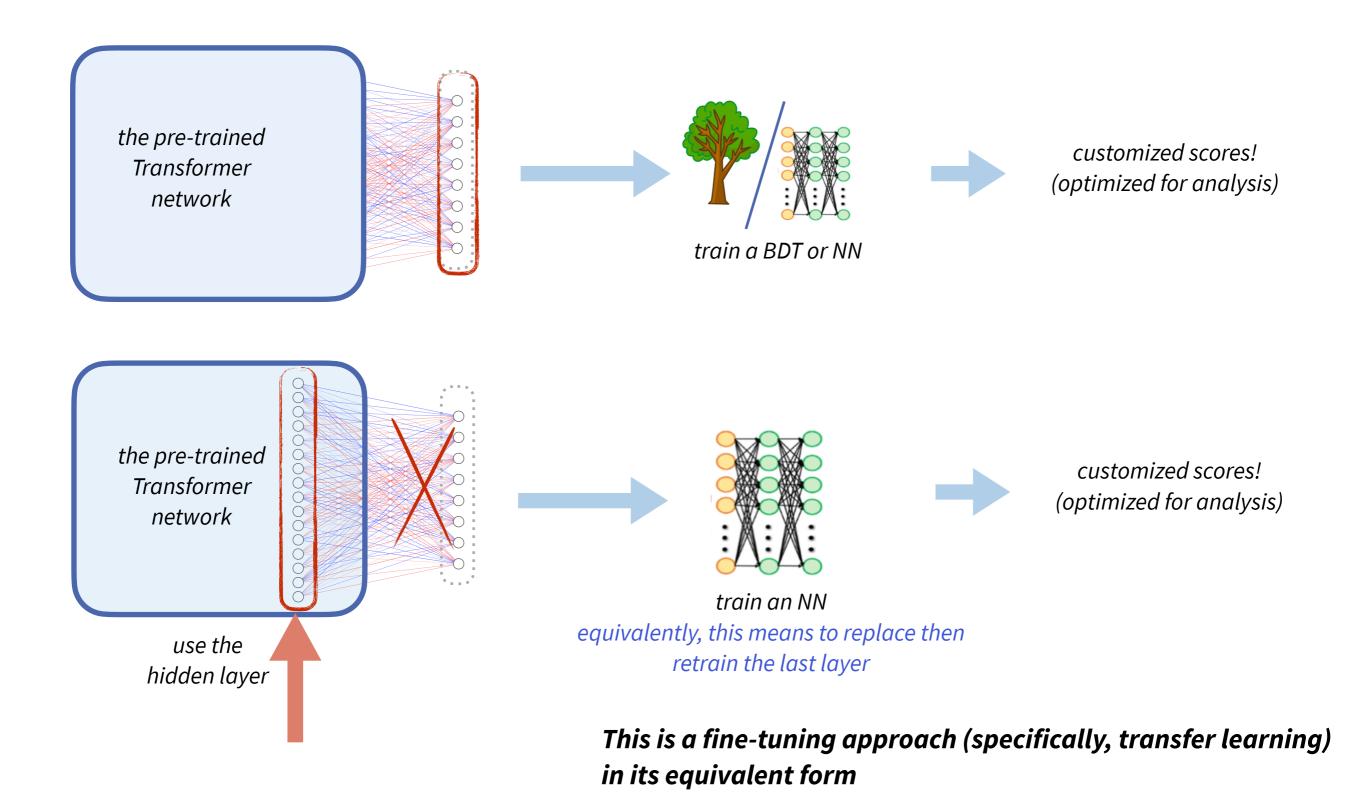
Statistical essence of jet tagging problem

→ Question: where is the limit of jet tagging?

→ Answer: the probability density ratio of two classes provides the optimal tagging



A glance into fine-tuning spirits



CMS's path to develop Global Particle Transformer

Philosophy to develop Global Particle Transformer (GloParT) in CMS

Good probability density estimators

- What is *p*? the "differential cross section" of a process *A* on very high-dim space
- discriminating process A vs. B: estimate $p_A(\mathbf{x})/p_B(\mathbf{x})$ as best as we can
- need a model to **cover a variety of processes** *A*, *B*, *C*, *D*,

$A \rightarrow BC$					B = S	М				B = BSM
$A \rightarrow DC$	e	μ	au	q/g	b	t	γ	Z/W	Н	
$\begin{array}{c} e \\ \mu \\ \tau \\ q/g \\ WS \\ \parallel \\ U \\ O \\ Z/W \\ H \end{array}$	Ζ'	Ŗ Z'	<i>Ŗ</i> <i>Ŗ</i> Ζ'	LQ LQ LQ Z'	$LQ \\ LQ \\ LQ \\ W' \\ Z'$	$LQ \\ LQ \\ LQ \\ T' \\ W' \\ Z'$	L^* L^* Q^* Q^* Q^* H	L^* L^* Q^* Q^* T' H H	$\begin{array}{c} L^{*} \\ L^{*} \\ Q' \\ B' \\ T' \\ Z_{KK} \\ H^{\pm}/A \\ H \end{array}$	Many
C = BSM	Consider just the di-object search for resonant $A \rightarrow B C$								Many	
J.Kim et al. JHEP 04 (2020) 30 1907.06659 ability										

• one upstream pre-training, broad downstream applicability