
Pretrained Event Classification Model 
for HEP analysis

Shuo Han
LBNL & UCB

Jan 11, 2025, USTC

arxiv:2412.10665 

https://arxiv.org/pdf/2412.10665


Human workflow and typical ML workflow

2

Problem Samples Training SolutionMachine learning

Human Problem Examples Learning Solution

Concept

Human workflow has 2 advantages: 
● Lower computing time 
● Working with limited data

Reasoning



ML workflow with pre-training

3

Problem Simulation Training SolutionMachine learning

Human Problem Example Learning Solution

Concept

(Although it’s still far from general AI) Pre-training can help AI to reduce GPU 
time, and work with limited data

Reasoning

All available 
open data Pre-training



Introduction
● In HEP analysis, each experiment carries out hundreds of measurements, most of 

which require many iterations of training neural network models.

● Our goal: a single model with pre-training that can be used for a wide range of tasks

● Better overall performance

● Lower training time

● Capability with limited statistics

● This development could contribute to a foundational model for HEP analysis in 
future

4



Outline
● We start with a simple task: binary classification for Higgs/Top processes

● How the pretrained model was built and its performance 

● Model interpretability → model similarity

● GPU resources cost comparison between model frameworks

5



Training Setup: Pretraining Model Data
Pretrained Model Training Data:
● Higgs processes: ggF/VBF/VH/ttH/tH, and BSM CP-odd, FCNC, STOP
● Top processes: single top, ttbar, ttt, tttt, ttW, ttyy
● Statistics: ~120M total (~10M per class)

6
stop FCNC

Binary classification Tasks:
● ttH CP Even vs CP Odd (H → 𝛄𝛄)
● FCNC vs tHjb (H → inclusive)
● stop vs ttH (H → inclusive)
● WH vs ZH (H → inclusive)
● ttW vs ttt



Training Setup: Inputs

nodes = particle

edges = relationship 
between particlesGraph Neural Networks (GNNs) are a natural choice 

because of the point-cloud-like structure of our data, the 
choice of GNNs is just a proof of concept though

Input Node Features:
● Reconstructed objects: particle 4-vectors
● Particle Labels: type, b-tagging, lepton charge

Input Edge Features:
● Angular and Translational Separation

Input Global Features:
● Number of particles in each graph

7



Training Setup: Baseline Model Architecture
Baseline Model:
A standard GNN trained for binary classification for 
one of our example analysis tasks.

Same model as ATLAS 4-tops observation paper [1] 

Pytorch and Deep Graph Library (DGL)

Inputs (graphs)

GN Block [2]

Output: Global 
Features

Classify
(Linear Layer)

Global Decoder
(MLP)

Output

Data Representation: 
Array of numbers

Data Representation: 
Graphs

Data Representation: 
GNN Score

8

[1] The ATLAS Collaboration: Eur. Phys. J. C 83, 496 (2023)
[2] arXiv:1806.01261

https://arxiv.org/pdf/2303.15061
https://arxiv.org/abs/1806.01261


Training Setup: Pretrained Model Architecture
Pretraining Model:
Trained on large and diverse dataset, with different training goals

9

Multi-Class Classification:
Separate the data by processes

Predictions:
● P(ttH)
● P(ggF)
● P(WH)
● … etc

Multi-Label Classification:
Separate the data by phase spaces

Prediction:
● Exists: higgs_exists, top1_exists, …
● Pt: higgs_pt, top1_pt, …
● η: higgs_eta, top1_eta, …
● 𝟇: higgs_phi, top1_phi, …



Training Setup: Fine-tuning Model Architecture
Fine-tuned Model: 
● obtain the pre-trained model first
● Keep using weights of the pretrained 

model, but define a newly initialized MLP 
Adjustment of learning rate
● Keep updating the pretrained model with a 

lower learning rate of 10-5

● Train the newly initialized model at a 
regular learning rate 10-4

● Learning rates decay every epoch 

NOT transferred learning because the 
pretraining is still trainable (the transferred 
learning setup is WIP)

Inputs (graphs)

GN Block

Output: Global 
Features

Classify
(Linear Layer)

Global Decoder
(MLP)

Pretrained Output

Pretrained Model

Classify
(Linear Layer)

Output

Newly Initialized Model

A general representation of 
our data



Results (Overall Performance)
Utilizing full statistics:

● 120M Pretraining
● 20M Analysis

Immediate Performance:
● Initial boost in performance
● Seen in all analysis tasks

Ultimate Performance:
● The ultimate performance is slightly increased 
● Seen only in some of the analysis tasks

Usage:
● Computing power is expensive and we can only 

afford a few epochs

11



12



Results (when Limited Stat.)
Limited Statistics:

● Significant increase in performance (up to 15% 
improvement in AUC, and 5% in accuracy)

Large Statistics:
● Small increase in performance (0-2% increase in 

AUC, and 0-0.5% in accuracy)

13

Usage:
● Training on real collider data 
● Categorization in small phase spaces, or 

signal region selection is very tight
● Simulation is expensive



Similarity calculation
How to tell that the pretraining works?
● Using similarity between different models

Similarity indicator: Centered Kernel Alignment (CKA) [3]

14

Inputs (graphs)

GN Block [2]

Output: Global 
Features

Classify
(Linear Layer)

Global Decoder
(MLP)

Output

Before Decoder:
General Representation of 

Data

[3] S. Kornblith, et. al. In International Conference on Machine Learning, p. 3519–3529, 2019.

https://arxiv.org/abs/1905.00414


Similarity between models
Compare each model with a well-trained benchmark baseline model: 
● Similarity between (benchmark) baseline and pre-trained models are <80%.
● Pre-trained models have slightly better performance to solve binary classification problems
● In summary, pre-trained models are utilizing different representations of collision events 

15

Compare each model with a 
well-trained benchmark 
baseline model



Resources Used For Training 
GPU hours to get achieve performance of 99% of the baseline ultimate performance

16

With full statistic (107) 
● Multiclass Pretraining: 46 GPU hours
● Multilabel Pretraining: 60 GPU hours 
● Baseline: 2.9 GPU hours in ave
● With pretraining: 1.1 GPU hours in ave



Conclusions
● Pretrained models has better performance with limited statistics or limited epochs

● Pretrained models converge faster, which leads to a decrease in GPU resources 

● We can calculate model similarity to gain insight on the information what the pre-trained 
models have learned

Thank you.

17



Thank you!

18


