Strong interaction in the quantum era

李 阳 中国科学技术大学近代物理系

量子计算和人工智能与高能物理交叉研讨会 核探测与核电子学国家重点实验室,2025年1月11日,合肥、

Quantum computing for high-energy physics

- Quantum algorithms provides theoretical speedup to overcome the large data bottleneck in HEP experiments
- Quantum simulation algorithm provides an ultimate path to overcome the computational complexity in simulating quantum field theories (QFTs)

Applications in HEP theory

Bell Inequality Violation & Entanglement in e^+e^- annihilation

> Motivation

- In history, the study of quantum information is initially focused on photonic system.
- With the progress of HEP, quantum information can also be investigated in highenergy particles at colliders.

 $\succ e^+e^- \rightarrow \gamma^* \rightarrow Y\overline{Y}$ at BEPCII

• Bell inequality violation (BIV) and entanglement can be probed in the hyperon-antihyperon system, with $Y\overline{Y} = \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma}, \Xi \overline{\Xi}$.

 The investigation is based on the two-qubit density operator for final hyperon systems.

Article Open access Published: 18 September 2024

Observation of quantum entanglement with top quarks at the ATLAS detector

The ATLAS Collaboration

Nature 633, 542-547 (2024) Cite this article

See ref. [The ATLAS Collaboration, Nature, 633, 542-547 (2024)].

Strong interaction in the quantum era Hamiltonian approach to strongly coupled quantum field theories suitable for quantum computing

李 阳 中国科学技术大学近代物理系

量子计算和人工智能与高能物理交叉研讨会 核探测与核电子学国家重点实验室, 2025年1月11日, 合肥

Parton picture

- Parton distribution function (PDF) f(x) describes the probability density of finding a collinear parton of longitudinal momentum faction x
- Non-perturbative \rightarrow obtained from global fits

quark model, Gell-Mann 1964

parton model, Feynman 1969

Parton entropy

$$S_{part} = -\int_0^1 \mathrm{d}x\, f(x)\log f(x) > 0.$$

- From parton distribution f(x), we can obtain a non-zero parton entropy S_{part}
- But, the proton is a pure state $ho=|\psi
 angle\langle\psi|$ with vanishing von Neumann entropy
- Entropy = loss of information: some quantum information of the proton is lost in the parton picture
- Related to some of the big puzzles in high-energy physics? confinement, origin of mass, origin of exotic hadrons etc

QCD as the next frontier

Electron-ion colliders: eRHIC, EicC, LHeC

[AbdulKhalek:2021gbh, Anderle:2021wcy, LHeC:2020van]

- Electron-positron colliders: superKEKB, Super au-charm facility (STCF)
- Heavy ion colliders: NICA, HIAF, FAIR

Light-Front Hamiltonian formalism

 \blacksquare Full quantum information is contained in the hadronic wave function $|\Psi
angle$

$$i\frac{\partial}{\partial x^{\mu}}|\Psi\rangle=P_{\mu}|\Psi\rangle,\quad(\mu=0,1,2,3)$$

- Relativity allows a free choice of the time variable, e.g. x^0 , $x^+ = x^0 + x^3$
- Infinite momentum frame = light-front quantization: retaining the partonic picture

Light-front wave functions (LFWFs)

- Light-front physics underlines hadron structures measured in high-energy scattering experiments
- Light-front wave functions provide the full quantum information of hadrons

Other approaches to access the LFWFs:

[Chang:2013pq, Yang:2018nqn, dePaula:2022pcb, Eichmann:2021vnj, Frederico:2019noo, Ji:2013dva, Radyushkin:2017cyf, Ma:2021yqx]

Example: diphoton decay $P \rightarrow \gamma \gamma^*$

[Lepage:1980fj, Li:2021ejv]

(hadron picture)

(parton picture)

Light-front wave functions bridge the parton picture and the non-perturbative hadronic picture

Proton as a strongly coupled relativistic quantum many-body system

Wilson's big idea: put QCD in big computers

First transistor: 1947 (Bell Lab) First qubit: 1998 (LANL)

-			1	2	3	4	6		7	8		10		12	13
	٩	Sector	4	93	989	0161	99.9	98.93	03463	014001	08 90	46'00.0	0) #l 99	को सरे को इ	alatatat
	١	91	T	T	\prec	T.		-TC			1				
	2	99	T.	\times	\sim		~~<	1×			Ŧ				
	3	989	≻	\succ		\prec		\prec	T,			ΨĘ.			
	4	4141	7	1.0	\succ	T		T	\prec	1			Ŧ		
	5	950		\succ	T.		X	\prec	•	•	\prec	З,			
	8	91.99	1	Ŧ	$> \sim$	Ŧ	\succ	T	~		Ŧ	\prec	ΞĘ.		
	7	02:02:0	•		T	>		\succ	1	\prec		Ŧ	-<	14	
	8	41 41 41		1		T			\succ	T			T	-<	Ϋ́ς
	9	98.99		Ŧ			\succ	Ŧ		•	X	\prec			
	10	91 90 3			Ŧ		Ŧ	>-	Ŧ		<u>}</u>	1	\prec		
	11	91 93 99	•			Ŧ		7	>-	T		\succ	T	\prec	
	12	02:02:02:0							5	>-			\succ	Ŧ.	\prec
	13	eč-si eč-si		1.1				•		7				\succ	T
	_														

Lattice gauge theory, 1974

LF Hamiltonian theory, 1989

$_{1+1}$ at large N_c

$$\mathcal{L} = \overline{\psi}(i D \!\!\!/ - m) \psi - \frac{1}{4} F^{\mu\nu a} F^a_{\mu\nu}, \qquad (a = 1, 2, \cdots, N_c^2 - 1)$$

- Confinement and chiral symmetry breaking
- 't Hooft quantized the theory on the light front $x^+ = 0$:

$$\begin{split} H_{\rm LF} &= \sum_{i} \int_{\epsilon}^{+\infty} \frac{\mathrm{d}k^{+}}{2\pi} \Big(\frac{m^{2} - 2\lambda}{2k^{+}} + \frac{\lambda}{\epsilon} \Big) \Big[b_{i}^{\dagger}(k^{+}) b_{i}(k^{+}) + d_{i}^{\dagger}(k^{+}) d_{i}(k^{+}) \Big] \\ &- \frac{\lambda}{8\pi^{2}N_{c}} \sum_{i,j} \int \mathrm{d}k_{1}^{+} \mathrm{d}k_{2}^{+} \mathrm{d}k_{3}^{+} \frac{1}{(k_{1}^{+} - k_{2}^{+})^{2}} b_{i}^{\dagger}(k_{2}^{+} + k_{3}^{+} - k_{1}^{+}) d_{i}^{\dagger}(k_{1}^{+}) d_{j}(k_{2}^{+}) b_{j}(k_{3}^{+}) \end{split}$$

- - 0

李阳, 2025年1月11日

where, $\lambda = q_s^2 N_c / 4\pi$ is known as the 't Hooft coupling.

Hadrons as eigenstates of the light-front Hamiltonian,

$$H_{\mathsf{LF}}|\psi_n(p^+)\rangle = \frac{M_n^2}{p^+}|\psi_n(p^+)\rangle$$
(1+1)D
(1+1)D
(3+1)D
(3

Meson sector:

$$|M_{n}(p^{+})\rangle = \sqrt{\frac{p^{+}}{2\pi N_{c}}} \sum_{i} \int_{0}^{1} \mathrm{d}x \, \phi_{n}(x) b_{i}^{\dagger}(xp^{+}) d_{i}^{\dagger}((1-x)p^{+}) |0\rangle$$

where, the meson light-front wave function $\phi_n(x)$ satisfies the 't Hooft equation,

$$\Big(\frac{m^2-2\lambda}{x}+\frac{m^2-2\lambda}{1-x}\Big)\phi_n^2(x)-2\lambda\int_0^1\frac{dy}{(x-y)^2}\phi_n(y)=M_n^2\phi_n(x)$$

Quark sector: the light-front energy of a quark diverges -- confinement!

$$\begin{split} &|Q(p^+,i)\rangle = b_i^{\dagger}(p^+)|0\rangle,\\ \Rightarrow & M_Q^2 = \lim_{\epsilon \to 0} \Big(\frac{m^2 - 2\lambda}{2p^+} + \frac{\lambda}{\epsilon} \Big) \to \infty \end{split}$$

quark

QCD_{1+1} at large N_c

- Instant-from $(x^0 = 0)$ Hamiltonian: involving forward and backward propagating modes -- complicated (& no probabilistic interpretation)
- Lattice Hamiltonian (Schwinger model): TN/VQE, zig-zag light cone

[Nature Comm. 12, 6499 (2021),]

Approach the light-front Hamiltonian in the infinite momentum limit

Quantum Jet simulation: single parton evolution in QCD_{3+1}

Jet evolution in QGP medium

- In relativistic heavy-ion collision, quark-gluon plasma (QGP) is formed
- We describe the QGP as a classical external field, and investigate the evolution of a parton within the medium

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}{}_{a}F^{a}_{\mu\nu} + \overline{\Psi}(i\gamma^{\mu}D_{\mu} - m_{q})\Psi$$
$$D^{\mu} \equiv \partial_{\mu} + ig(A^{\mu} + \mathcal{A}^{\mu})$$

Classical simulation

Electron in laser field Zhao et al. 1303 3273

Ultrarelativistic quark-nucleus scattering Li et al, 2002.09757

Scattering and gluon emission in a color field

Jet in Glasma field

Li, Lappi, Zhao, 2107.02225 Li et al, 2305.12490

... Ongoing work by Avramescu et al

Quantum simulation

Nuclear inelastic scattering Du et al, 2006.01369 Strategy to Jet quenching parameter Barata, Salgado, 2104.04661 Medium-induced QCD jet Barata et al, 2208.06750, 2307.01792 Yao, 2205.07902 Wu et al, 2404.00819 WQ et al, 2411.09762 Adapted from W. Qian

Digital quantum simulation on the light-front

Quantum algorithms: \triangleright

- Static: ground state •
- **Dynamic** : time evolution $\sqrt{}$
- **Truncated Taylor Series** $H = \sum_{\ell=0}^{L-1} \alpha_{\ell} H_{\ell}$ \triangleright

A post-Trotter algorithm based on linear combination of unitaries, see ref. [Dominic W. Berry, et al. Phys. Rev. Lett., 114,0905021

Time complexity

Quantum circuit design

$$H = \sum_{\ell=0}^{L-1} \alpha_{\ell} H_{\ell} \longrightarrow \begin{bmatrix} H/\Lambda & * \\ * & * \end{bmatrix} \xrightarrow{\mathrm{TTS}} \begin{bmatrix} \frac{1}{e^{t\Lambda}} e^{-itH} & * \\ * & * \end{bmatrix} \xrightarrow{\mathrm{OAA}} \begin{bmatrix} e^{-itH} & * \\ * & * \end{bmatrix}$$

Embed the non-unitary into a larger system.

吴思浩

Efficient quantum simulation of quark/gluon jet

$$i\frac{\partial}{\partial x^{+}}|\Psi\rangle = H_{LF}|\Psi\rangle$$

where,
$$H_{LF} = H_{LFQCD} + J_{\mu} \mathcal{A}^{\mu}$$

Medium and Evolution

Classical stochastic background field (to reduce problem complexity)

$$\langle\!\langle \rho_a(x^+, \boldsymbol{x}) \rho_b(y^+, \boldsymbol{y}) \rangle\!\rangle = g^2 \mu^2 \delta_{ab} \delta^{(2)}(\boldsymbol{x} - \boldsymbol{y}) \delta(x^+ - y^+)$$

$$(m_g^2 - \nabla_{\perp}^2) \mathcal{A}_a^-(x^+, \mathbf{x}) = \rho_a(x^+, \mathbf{x}) \qquad \qquad Q_s^2 \equiv \frac{C_F g^4 \mu^2 L_{\eta}}{2\pi} \quad \text{saturation}$$

McLerran and Venugopalan, 9309289 (1993)

> > -

0,00000

Jet probe evolution, decomposed as sequence of unitary operators

$$\begin{split} |\psi_{L_{\eta}}\rangle = & U(L_{\eta};0) |\psi_{0}\rangle \equiv \mathcal{T}_{+}e^{-i\int_{0}^{L_{\eta}} \mathrm{d}x^{+} P^{-}(x^{+})} |\psi_{0}\rangle \\ & U(L_{\eta};0) = \prod_{k=1}^{N_{t}} U(x_{k}^{+};x_{k-1}^{+}) \quad \text{ non-perturbative} \end{split}$$

Universal framework to simulate (3+1)-d QCD jet probe evolution in medium in real-time!

Quantum simulation algorithm

FT allows efficient/sparse simulation in the respective basis

Jet quenching

Quark momentum broadening: $\hat{q} = \frac{\Delta \langle p_{\perp}^2(x^+) \rangle}{\Delta x^+}$ Eikonal approximation: $\hat{q} = \frac{q_s^2}{L_p}$

QCD₃₊₁: strongly coupled relativistic quantum many-body problem

The quantum Hamiltonian is not fully known -- need non-perturbative renormalization:

$$H_R = \underbrace{H_{\text{can}}}_{\text{divergent}} + \underbrace{H_{\text{ct}}}_{\text{divergent}} = \underbrace{H_{\text{can}}}_{\text{known}} + \underbrace{\sum_{i} c_i O_i}_{\text{not known}}$$

Exponential wall

 $\dim \mathcal{H} = N^{dA}, \qquad (A \sim N)$

Moore's law: computational power doubles every 2 years

学阳,2020年1月11日

Strongly coupled scalar theory with Yukawa interaction [Li:2015iaw, Karmanov:2016yzu]

$$\mathcal{L}=\partial_{\mu}N^{\dagger}\partial^{\mu}N-m^{2}N^{\dagger}N+\frac{1}{2}\partial_{\mu}\pi\partial^{\mu}\pi-\frac{1}{2}\mu^{2}\pi^{2}+gN^{\dagger}N\pi,$$

 $m=0.94\,{\rm GeV}$, $\mu=0.14\,{\rm GeV}$, $\alpha=g^2/(16\pi m^2)\sim {\rm O}(1)$

Simplest strongly coupled QFT in (3+1)D, a rudimentary model for $N\pi$ interaction

$$\Rightarrow \quad H_{\rm int} = -g \int {\rm d}^3 x \, N^\dagger N \pi, \qquad \rightarrow \qquad U(r) = -\alpha \frac{e^{-\mu x}}{r}$$

Systematic Fock sector expansion and truncation:

$$|N\rangle_{\rm ph} = |N\rangle + |N\pi\rangle + |N\pi\pi\rangle + |N\pi\pi\pi\rangle + \cdots$$

$$H_R = \underbrace{H_{\text{can}}}_{\text{divergence}} + \underbrace{H_{\text{ct}}}_{\text{divergence}} = H_{\text{can}} + \sum_i c_i O_i$$

- Weinbergian renormalization: symmetry + power counting
 - Breaking of Poincare symmetry due to truncation requires an infinite number of counterterms
 - Power counting insufficient to cancel out all divergences
- Fock sector dependent renormalization
 - Continuum regularization: introducing Pauli-Villars (PV) particles whose mass $\mu_{\rm PV}$ serves as a regulator
 - Kinematical symmetry + parton number counting

[Karmanov:2008br]

[Li:2015iaw, Karmanov:2016yzu]

Diagrammatic representation of eigenvalue equation

Fock sector dependent renormalization

Numerical solution and Fock sector convergence

- Work with momentum space and Fock sector (parton number) truncation $A = 1, 2, 3, 4, 5 \cdots$
- Adopt Lagrange mesh as the momentum-space grid
- Adopt standard linear solver on parallel machines

$$\dim \mathcal{H}_{A=4} = N^8 \rightarrow N^5 \sim 10^7$$

Scalar theory is numerically well converged up to three- and four-body truncations

Similarity renormalization group (SRG)

Effective Hamiltonian at a finite scale *s*, built from infinitesimal similarity transformations:

$$H_s = \underbrace{\mathcal{U}_s^{-1} H_\infty \mathcal{U}_s}_{\text{divergence free}} \quad \Rightarrow \quad \frac{\mathrm{d} H_s}{\mathrm{d} s} = [G_s, H_s]$$

 \blacksquare Perturbative solution of SRG at scale $s \gg \Lambda_{
m OCD}$ thanks to asymptotic freedom

[Glazek:2012qj]

$$H_s = T + g_s V_{1s} + g_s^2 V_{2s} + {\cal O}(g_s^3)$$

	One-body	two-body	Three-body	Four-body
$O(g_{g})$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
$O(g_s^2)$	- SM2	3		
$\theta(g_s^3)$		- <u>x</u> <u>x</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Similarity renormalization group (SRG)

Lessons from quantum chemistry

AB INITIO QUANTUM CHEMISTRY: A SOURCE OF IDEAS FOR LATTICE GAUGE THEORISTS

Kenneth G. WILSON

The Ohio State University, Department of Physics, 174 W. 18th Avenue, Columbus, OH 43210 USA

Jacob's tower for light-front QCD

Basis light-front quantization (BLFQ)

[Vary:2009gt]

• Work with small basis space $(N \sim 8)$ through Hamiltonian renormalization: dim $\mathcal{H} = N^{dA}$

$$H_{\mathrm{eff}} = \mathcal{P}X^{-1}H_0X\mathcal{P} \approx T + V_1 + V_2 + \dots + V_a + \underbrace{V_{a+1} + \dots + V_A}_{A}$$

Retain semi-classical approximation & all symmetries in basis space

Basis light-front quantization I

• Configuration interaction:

[Vary:2009gt]

$$H|\psi\rangle = M^2 |\psi\rangle \quad \Rightarrow \quad \sum_j H_{ij} c_j = M^2 c_i$$

where, $H_{ij}=\langle \phi_i|H|\phi_j\rangle$, $c_i=\langle \phi_i|\psi\rangle.$

- \blacksquare Single-particle basis $\{|\phi_i\rangle\}$ is chosen to preserve all kinematical symmetries of QCD
 - 3 Boosts + 1 rotation:

$$\phi_{nml}(\vec{x}_{\perp},x^-) = \mathcal{N}e^{\frac{i\pi lx^-}{L} + im\theta_{\perp} - \frac{\rho^2}{2}}\rho^{|m|}L_n^{|m|}(\rho), \quad (\rho = \Omega\sqrt{l/K}x_{\perp})$$

 \blacksquare Longitudinal direction: discretized momentum basis, Jacobi polynomials on a k-simplex

[Chabysheva:2013oka, Li:2017mlw]

- Other symmetries of QCD
- Consistent with holographic LFQCD
- Large sparse matrix eigenvalue problem: suitable for modern HPC (& quantum computing)

Basis light-front quantization II

Energy cutoffs/regularization:

$$\sum_i \left[2n_i + |m_i| + 1\right] \le N_{\max}, \quad \sum_i m_i + s_i = m_J, \quad \sum_i l_i = K.$$

UV & IR regulators:

$$\Lambda_{\rm UV} = \Omega \sqrt{N_{\rm max}}, \qquad \Lambda_{\rm IR} = \Omega / \sqrt{N_{\rm max}}$$

- Truncation on the many-body basis:
 - Fock sector truncation
 - N_{\max} -truncation, K-truncation
 - Coupled cluster/coherent basis
 - DMRG, matrix product states, tensor network, ...
- Variational theorem
- Continuum limit (need a proof):

$$N_{\max} \to \infty, \quad K \to \infty, \quad A \to \infty$$

[Hiller:2016itl, More:2014rna]

Effective hadron Hamiltonian

One may also consider effective (3+1)d Hamiltonian on the light front.

For given set of basis states, the Hamiltonian operator can be written in creation and annihilation operators for those modes: $\hat{\mu} = \hat{\mu} + \hat{\mu} + \dots = \sum_{k=0}^{k} \frac{1}{2} \sum_{k=0}^{k}$

$$\hat{H} = \hat{H}_1 + \hat{H}_2 + \dots = \sum_{ij} h_{ij} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{4} \sum_{ijkl} h_{ijkl} \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} \hat{a}_k \hat{a}_l + \dots$$

Qubit encoding: One-hot encoding and Binary encoding $(N, N) = (2^n, 2^n) \rightarrow H_q = \sum_{\alpha} c_{\alpha} P_{\alpha} O(N)$

Jordan & Wigner (1928); Kreshchuk et al, 2002.04016

Valence $|q\bar{q}\rangle$ for light mesons

Variational approaches are used to solve the hadronic mass spectrum

Variational quantum algorithms

Peruzzo, et al, 1304.3061 (2014) Nakanishi, Mitarai, Fujii, 1810.09434 (2019)

Based on variational principle, build parameterized wave functions $\langle \psi(\theta) | H | \psi(\theta) \rangle \geq \langle E_0 \rangle = \langle \psi_0 | H | \psi_0 \rangle$

Hadron spectrum

WQ, Basili, Pal, Luecke, Vary; 2112.01927

Qubit representation (density matrix) for lowest two states: $D_{ij} = \ket{\psi_i} \langle \psi_j |$

Using light-front wave functions (LFWF) on qubits to compute various observables with projection ops

$N_{\rm max}$	L_{\max}	Decay constants	Exact result (MeV) $$	${\rm qasm}~{\rm sim}~({\rm MeV})$
1	1	f_{π}	178.18	178.17 ± 1.97
	1	$f_{ ho}$	178.18	178.17 ± 1.97
4	1	f_{π}	193.71	194.28 ± 15.49
4	1	$f_{ ho}$	231.00	225.72 ± 13.44

Applications

- Semi-classical LF wave equations: [Li:2021jqb, Li:2022izo, Li:2022ytx, Li:2023izn]
- Realistic QQ interaction:
 - QED: [Honkanen:2010rc, Zhao:2014xaa, Wiecki:2014ola, Hu:2020arv, Nair:2022evk, Nair:2023lir]
 - heavy flavors [Li:2015zda, Li:2017mlw, Leitao:2017esb, Li:2018uif, Adhikari:2018umb, Tang:2018myz, Lan:2019img, Tang:2019gvn, Tang:2020org, Li:2021ejv, Li:2021ewv, Wang:2023nhb]
 - light mesons [Jia:2018ary, Lan:2019vui, Lan:2019rba, Qian:2020utg, Mondal:2021czk, Adhikari:2021jrh, Li:2022mlg, Zhu:2023lst]
 - nucleons & baryons [Mondal:2019jdg, Xu:2021wwj, Liu:2022fvl, Hu:2022ctr, Peng:2022lte, Zhu:2023lst, Zhang:2023xfe, Zhu:2023nhl]
 - tetraquarks [Kuang:2022vdy]
- Dynamical gluons & sea: [Lan:2021wok, Xu:2022abw, Xu:2023nqv, Lin:2023ezw, Kaur:2024iwn]
- Time-dependent problems (tBLFQ): [Zhao:2013cma, Zhao:2013jia, Chen:2017uuq, Li:2020uhl, Li:2023jeh]
- Quantum computing: [Kreshchuk:2020kcz, Kreshchuk:2020aiq, Qian:2021jxp, Kreshchuk:2023btr, Wu:2024adk, Du:2024zvr]

Similar methods: [deTeramond:2021yyi, Ahmady:2021lsh Lyubovitskij:2022rod, Ahmady:2022dfv, Shuryak:2021fsu, Shuryak:2021hng, Shuryak:2022thi, Shuryak:2022wtk, Shuryak:2023siq, Liu:2023yuj, Liu:2023fpj, Miesch:2023hvl] 李阳, 2025 年1月11日

Summary

- Light-front Hamiltonian formalism is a natural framework to describe hadrons as relativistic quantum many-body problems
- Quantum computers are possible powerful platform to enable the description of strong interaction on the amplitude level
- Basis light-front quantization provides an avenue to solving QCD from first principles on classical and quantum machines

backup

Positronium

Bloch-Wilson interaction: perturbative solution to the OSL effective Hamiltonian [Krautgartner:1991xz]

$$V = \frac{4\pi\alpha}{Q^2} \bar{u}_{s'}(k') \gamma_{\mu} u_s(k) \bar{v}_{\bar{s}}(\bar{k}) \gamma^{\mu} v_{\bar{s}'}(\bar{k}') + O(\alpha^2)$$

Comparison with perturbative QED:

[Bethe & Salpeter, 1977 Springer; cf. Lamm:2016djr]

$H = T + H_{\rm Col} + H_{\rm Dar} + H_{\rm rel} + H_{\rm LS} + H_{\rm SS}$

李阳, 2025年1月11日

Charmonium: hydrogen atom of QCD

Good agreement with the PDG data for both the masses and the widths

[LFWFs published on Mendeley Data, doi: 10.17632/cjs4ykv8cv.2]

Parameter-free prediction of radiative widths

[Li:2018uif, Li:2021ejv, Wang:2023nhb]

$$\begin{split} \langle V(p',\lambda')|J^{\mu}(0)|S(p)\rangle &= E_1(Q^2) \Big[e_{\lambda'}^{\mu*}(p') - \frac{e_{\lambda'}^* \cdot p}{(p \cdot p')^2 - M_S^2 M_V^2} \big(p'^{\mu}(p \cdot p') - M_V^2 p^{\mu}\big) \Big] \\ &+ C_1(Q^2) \frac{M_V}{Q(p \cdot p')^2 - M_S^2 M_V^2} \big(e_{\lambda'}^* \cdot p\big) \Big[(p \cdot p')(p + p')^{\mu} - M_S^2 p'^{\mu} - M_V^2 p^{\mu} \Big] \,, \end{split}$$

Leptonic and radiative transitions probe the fundamental structure of the hadrons:

[Review: Barnes & Yuan, Int. J. Mod. Phys. A 2009]

Quarkonium light-front wave functions

[LFWFs published on Mendeley Data, doi: 10.17632/cjs4ykv8cv.2]

LFWF representation of radiative transition form factors [Lepage:1980fj, Li:2021ejy]

Amplitude of single-tag two-photon of a pseudo-scalar meson ($n^2 = 0$):

$$\mathcal{M}^{\mu\nu}_{P\to\gamma\gamma^*} = 4\pi\alpha_{\rm em}\varepsilon^{\mu\nu\rho\sigma}q_\rho n_\sigma F_{P\gamma}(-q^2)$$

Parameter-free prediction of transition form factors

Gravitational form factors (GFFs)

- Hadronic matrix element of the stress-energy tensor, which encodes the energy and stress distributions within the system
 - Mass decomposition and the anomalous mass of the proton
 - Mechanical properties, equilibrium and stability
- Experimentally accessible through GPDs -- tremendous attention

Ji:1996nm, Polyakov:2002yz]

Physical interpretation of GFFs are under tense debate

Charmonium gravitational form factors

- Adopt charmonium wave functions from basis light-front quantization (BLFQ)
- Alternative charmonium wave functions from Dyson-Schwinger equations
- Effective one-body $c\bar{c}$ potential:

$$\mathcal{P}^{-}_{\rm int}(r_{\perp}) \equiv \frac{1}{2}\mathcal{T}^{+-}(r_{\perp}) - \Big\langle \sum_{j} \delta^{2}(r_{\perp} - r_{j\perp}) \frac{-\frac{1}{4}\overline{\nabla}_{j\perp}^{2} + m_{j}^{2} + \frac{1}{4}\nabla_{\perp}^{2}}{x_{j}P^{+}} \Big\rangle = \frac{1}{P^{+}} \langle V_{\rm eff}(r_{\perp}) \rangle \sim \psi^{*}(r)V(r)\psi(r)$$

[Li:2017mlw]

[Cao, in progress]

Energy density vs invariant mass squared density

Energy density $\mathcal{E}(r_{\perp})$ vs the invariant mass squared density $\mathcal{M}^2(r_{\perp})$:

$$\begin{split} \mathcal{E}(r_{\perp}) &= M \int \frac{\mathrm{d}^2 q_{\perp}}{(2\pi)^2} e^{-i\vec{q}_{\perp}\cdot\vec{r}_{\perp}} \Big\{ \Big(1 + \frac{q_{\perp}^2}{4M^2}\Big) A(q_{\perp}^2) + \frac{q_{\perp}^2}{4M^2} D(q_{\perp}^2) \Big\}, \\ \mathcal{M}^2(r_{\perp}) &= M^2 \int \frac{\mathrm{d}^2 q_{\perp}}{(2\pi)^2} e^{-i\vec{q}_{\perp}\cdot\vec{r}_{\perp}} \Big\{ \Big(1 + \frac{q_{\perp}^2}{4M^2}\Big) A(q_{\perp}^2) + \frac{q_{\perp}^2}{2M^2} D(q_{\perp}^2) \Big\} = M \Big[\mathcal{E}(r_{\perp}) - \frac{3}{2} \mathcal{P}(r_{\perp}) \Big] \end{split}$$

Energy density is positive

Invariant mass squared density becomes negative at small r_{\perp} : tachyonic core within charmonium?

11/0

[Hu:2024edc]

$$D = \int \mathrm{d}^3 r \, r^2 \mathcal{P}(r) \stackrel{???}{<} 0$$

Speculation: a mechanically stable system must have a repulsive core and an attractive edge

• We find that while η_c has a repulsive core, χ_{c0} has an attractive cores, and both have negative D!

Physical densities

[Xu:2024cfa]

Matter density $\mathcal{A}(r_{\perp})$, energy density $\mathcal{E}(r_{\perp})$, invariant mass squared density $\mathcal{M}^2(r_{\perp})$ and trace scalar density $\theta(r_{\perp})$

IOP Pu	iblishing f 🎔 in	n D 3	2	
≡ physicsworld			۹	Audio and video 🔻 Late
	(f) (iii)	Charn calcul 05 Jul 20	noniur ations	ILEAR RESEARCH UPDATE m's onion-like structure is revealed by new S

Application to nucleon structures

[Mondal:2019jdg, Xu:2021wwj, Xu:2022abw, Xu:2023nqv, Xu:2024sjt]

