Real-time data processing with ML

周启东(ZHOU Qi-Dong) Institute of Frontier and Interdisciplinary Science, Shandong Univ. (Qingdao)

11-12 Jan. 2025, Hefei USTC 量子计算和人工智能与高能物理交叉研讨会

Exp.Run timeData (PB)TotalBESIII2008-20280.510STCF-300-500

Exp.	Run time	Data (PB)	Total				
BESIII	2008-2028	0.5	10				
STCF	-	300-500	-				
CEPC	_	1.5-3(H) 500-50000 (Z)	_	DR			
Data	High data rate	ASICs and systems		7.1			
density	New link tech	nologies (fibre, wireless,	wireline)	7.1			
	Power and rea	adout efficiency		7.1			
Intelligence	Front-end prog	Front-end programmability, modularity and configurability					
on the	Intelligent pov	ver management		7.2			
detector	Advanced dat	a reduction techniques	(ML/AI)	7.2			
40	High-performa	ance sampling (TDCs, A	DCs)	7.3			
4U- tochniquos	High precisior	High precision timing distribution					
techniques	Novel on-chip	Novel on-chip architectures					
Extromo	Radiation hard	dness		7.4			
environmer	Cryogenic ten	Cryogenic temperatures					
and longev	ity Reliability, fau	lt tolerance, detector co	ontrol	7.4			
	Cooling	Cooling					
	Novel microele	ectronic technologies, dev	vices, materials	7.5			
Emeraina	Silicon photor	Silicon photonics					
technologie	s 3D-integration	and high-density interc	connects	7.5			
•	Keeping pace	Keeping pace with, adapting and interfacing to COTS					

Must happen or main physics goals cannot be met

* LHCb Velo

Desirable to enhance physics reach

R&D needs being met

ECFA detector R&D

2

Readout system (Belle II vs. LHCb)

- Belle II: L1 trigger + HLT
 - Trigger efficiency:
 - •Had. B physics \sim 100% τ physics
 - 70~95%

- •LHCb: "triggerless" readout & DAQ
 - CPU+GPU based software trigger
 - Rate of physical process: ~MHz
 - •No hardware trigger available

- ALICE: continus readout
 - TPC w/ triggerless readout + others w/ hardware trigger •TPC signal: ~100 µs, physical event rate 50 kHz, TPC signal overlap
 - Very basic hardware+ more effective software trigger

Readout and DAQ system(ALICE)

Gain power of apparatus with data acceleration Continues readout (less-hardware filtering) Powered by hardware acceleration Heterogeneous computing CPU

Typical TDAQ system

Decisions

Trigger system (L1) (hardware filtering)

Trigger-less data readout system

Digital

Data readout system

Luminosity frontier: SuperKEKB

Luminosity frontier: SuperKEKB

- Asymmetric e+e- collider
 - $e^+e^- \rightarrow \gamma(4S) \rightarrow B\overline{B}$
 - very clean and well-known initial state

Beam current: KEKB x ~1.5

Belle II detector and dataset

Vertex detector (VXD)

Inner 2 layers: pixel detector (PXD) Outer 4 layers: strip sensor (SVD)

Central Drift Chamber (CDC)

He (50%), C_2H_6 (50%), small cells, long lever arm

Particle Identification

Barrel: Time-Of-Propagation counters (TOP) Forward: Aerogel RICH (ARICH)

ElectroMagnetic Calorimeter (ECL)

CsI(TI) + waveform sampling

Features:

- Near-hermetic detector

Gev

• Good at measuring neutrals, π^0 , γ , $K_{L...}$ $\sigma(E)/E \sim 2-4\%$

• Vertexing and tracking: σ vertex ~ 15µm, CDC spatial res. 100µm $\sigma(P_T)/P_T$ ~ 0.4%

Belle II trigger strategy

- Design requirements: ~100% for $\gamma(4S)$ ->BB(hadronic decay), Tau/Charm, Exotics
 - No dead-time -> pipeline
 - Single photon trigger
 - Single track trigger
- Max. trigger rate: 30 kHz @ 6 x 10³⁵ cm⁻² s⁻¹ Physics trigger ~15 kHz
- Latency limit: ~5 usec (SVD APV25 buffer structure)
 - A fixed latency of about 4.4 usec
- Event timing resolution: 10 nsec

Process	σ(nb)	Rate@L=6x10 ³⁵ (kHz)
Bunch. cross.	_	2x10 ⁵
Beam bkg	_	300-600
Bhabha	44	50
Total->L1	_	200350->~15

		_
Process	σ(nb)	L1@L=6x10 ³⁵ (
Bhabha	44	0.35*
Two photon	13	10
Upsilon(4S)	1.2	0.96
Continuum	2.8	2.2
μμ	0.8	0.64
ττ	0.8	0.64
γ-γ	2.4	0.019*
Total	67	~15

Belle II trigger system

- CDC, ECL: main triggers for tracks Challenges: and clusters low multiplicity trigger vs. background
- KLM: trigger muon
- TOP: event timing \bullet
- GRL: matching of sub-triggers
- GDL: final trigger decision \bullet

. . .

- High track trigger vs. crosstalk
- Drawback of track trigger at endcap
- Latency budget vs. transmission and logics

10

Belle II TDAQ system

- Unified common readout system (except for PXD)
- Unified timing and trigger distribution (TTD) system
- A pipeline readout
- To handle 30 kHz level 1(L1) trigger with O 1% dead time under raw event size of 1 MB

 Provide L1 trigger signal to DAQ using FPGA chips for real-time processing on detector raw data.

• HLT provide Region of Interest (RoI) to PXD for significantly reducing the data size.

• Latency O sec.

Motivation of Neural Network for L1 Track trigger

- DAQ system is designed to handle 30 kHz
 - Physical trigger ~15 kHz, require S/N = 1
- L1 trigger rate depends significant on background condition
- Advanced CDC algorithm to further suppress background
- A fixed latency of about 4.4 usec

Tracks z_0 distribution after trigger

12

Machine Learning for L1 Track trigger (HARDWARE)

13

Axial wire

Stereo wire

Basics of L1 CDC trigger

Neural Network z-trigger

- **Crossing angle** α for priority wires

Deep Neural Network

- Inputs: Drift time t_{drift} , wires relative location ϕ_{rel} , Crossing angle α for priority wires + Drift time for all other wires
- Introduce the self-attention architecture to "focus" on certain inputs
- Output track vertex z_0 , track θ and signal/background classifier output (Q)

Parameter	#Attention value	#hidden nodes	#hidden layer	activate	precision	Total multiplier
Values	27	27	2	Leaky Relu	Float 16	4,185

16

Development flow of DNN on FPGA

Belle II UT4

Xilinx UltraScale XCVU080, XCVU160 25 Gbps with 64B/66B

Simulation performance of DNN

- Latency : 76 clock = 592.8 ns ;require: < 600ns
- FPGA resource (UT4: Virtex UltraScale XCVU160) usage:
 - DSP: ~70%, LUT: ~50%, others <30%
- AUC do not get large drop comparing RTL and software simulation
- At signal efficiency ~95%
 - Background rejection rate ~85%
- DNN trigger with **HARDWARE** under commissioning, close to operate

Improvement try for CDC track trigger

- Develop a algorithm improve the performance for the upgrade (10 usec latency) Start from optimization of DNN model
- Modify the number of hidden layers and learning rate
 - Hidden layer: $2 \rightarrow 4$, learning rate: $1e^{-2} \rightarrow 1e^{-3}$
 - Others keep the same
- Latency: 76 clock (592.8 ns) -> 82 clocks (640 ns) • Next step, change the inputs (CDC hits info.), instead of 2D track parameters

19

DNN implementation on Versal ACAP

- R&D of a new general FPGA device using the Versal ACAP
 - Heterogenous acceleration (VCK190, VCK5000 evaluation kit)
 - Al engine

UG1079

Figure 2: AI Engine Array

Versal ACAP 5000 evaluation kit)

Figure 4: AI Engine

- DNN implementation:
 - Model on a "graph"
 - Dense layer on a "kernel"
- Al engine: C++ based coding on Vitis
 - Al engine libraries
 - Al engine specific functions
 - Scaler, Vector engines, pipelining, etc.

	Layer 1	Layer 2	Layer 3	Layer 4	L
Input nodes	71	27	27	27	
Output nodes	27	27	27	27	
Active Func.	LeakyReLU	Softmax		LeakyReRU	

Al Engine Resource Utilization	
Tiles used for AI Engine Kernels:	5 of 400 (1.25 %)
Tiles used for Buffers:	7 of 400 (1.75 %)
Tiles used for Stream Interconnect:	8 of 450 (1.78 %)
DMA FIFO Buffers:	0
Interface Channels used for ADF Input/Output:	4 (PLIO: 4)
Interface Channels used for Trace data:	0

Latency optimization on Versal ACAP

NAME	VALUE	0.00000 us	20.000000 us	40.00000 (is 60.00	0000 us	
> Tile(24,0)	_main				_main		
> Tile(24,1)							
>Interface Tile(24)							
> Tile(25,0)	_main	main	<u></u>		_main		
> Tile(25,1)	_main	main		_main			
> Tile(25,2)	main			main			
> Interface Tile(26)							
		0.6	644 us				
NAME	VALUE	0.000000 us	1.000000 us	2.000000 us	3.000000 us	4.000000 us	
> Tile(23,0)	_main				_main		
> Tile(23,1)	_main			_main	S	oftm	
> Interface Tile(23)							
> Tile(24,0)	_main			_main		hid4_2	
> Tile(24,1)	_main		mai	.n	hid3_27to27_no_	act(adf	
> Tile(24,2)	_main		mai	.n	hid2_27to2		
> Tile(25,0)	_main		hid1_71to27_leakyre	elu(adf::io_b			
	Laver 1	Laver 2	Laver 3	Laver 4	Laver 5	Total	
Input nodes	71	27	27	27	27	—	
Output nodes	27	27	27	27	3	_	
Active Func.	LeakyReLU	Softmax		LeakyReRU	Tanh	_	
Ver.0 latency	~12us	~66us	~1.5us	~5.5us	~9.9us	~86us	
Ver.1 latency	~2.1us	~1.3us	~1.5us	0.9us	~0.2us	~5us	

	Compare				٢
				<mark>86.160 us</mark>	
us	40.000000	is 60.00	0000 us	80.00000 us	100.
		_main			
	main	_main			ain
				main	10111
	_main				main
					5.588 us
;	2.000000 us	3.000000 us	4.000000 us	5.00000	u <mark>s </mark> 6
	<u> </u>	main	· · · · · · · · · · · ·		
	main		oftm		
	main		hid4	27to27	
mai	n	hid3_27to27_no_a	act(adf		
mai	n	hid2_27to2			_main
kyre	lu(adf::io_b			_main	
	Layer 4	Layer 5	Total		
	27	27			
	27	3	_		
				-	

Machine Learning for software track trigger (SFOTWARE)

Overview of high level trigger system at Belle II

- Full event reconstruction (same as offline processing)
- Crude calibration constant
- •13 HLT units, in total ~6200 CPU cores (design: 7000 cores)
- Data processing: ~ 2.1kHz/ HLT unit w/ hyper-threading
- Event size at HLT in the last run period: ~150 kB/event
- PXD event size = 1MB/event, 10 times larger than the rest of detectors
- Region of interest (Rol) method is effective to reduce the data size
- ROI
 - Tracking software running on HLT nodes

Concept of HLT processing

- Motivations of introducing a GNN track finder (SOFTWARE)
- Low efficiency for displaced vertices
 - Efficiency decrease as displacement increase
 - Important signature for new physics search
- Higher background
- CDC wire inefficiencies
 - Bad wires or electrics
 - Decreased efficiency

GNN based CDC track finder

Comput.Phys.Commun. 259 (2021) 107610

• Modular structure for track finding, with flexible of reconstruction sequence

GNN for offline track finding

- Find track parameters: momentum, starting position and charge
- Find unknown number of tracks \rightarrow Object Condensation (arXiv:2002.03605)
- Computing resource and time constraint may reducible

- lacksquare

 - TDC and ADC of signal information
 - layer, superlayer, and layer info. with suprlayer
- Adjustable Parameters
 - 797,812 trainable parameters (3MB weight files)

Performance of GNN

- Efficiency of displaced vertex tracks improved from 85.4% with a fake rate of 2.5%, compared to 52.2% and 4.1%
 - The other performance similar as original algorithm
- Momentum p_x , p_y , p_z starting position v_x , v_y , v_z,charge
 - Provide initial inputs for GENFIT
- GNN prediction is drawn according to the track parameters predicted by the GNN
- Plan to added as additional track finder for Belle II

L. Reuter et. at (KIT) arXiv: 2411.13596

GNN for CDC track background filtering

- Developed a GNN algorithm (based on BESIII's algorithm) for Belle II CDC hits clean up
 - lacksquare

Belle II simulation (own work)

 $\mu + \mu$ - (particle gun)

GNN noise filtering

Transform space

Transform a space

DBSCAN clustering

NN acceleration on Versal ACAP

- Real-time graph building algorithm enables GNN implementation on FPGA for Belle II <u>M. Neu et al. Comp. Soft. BigSci. 8, 8(2024)</u>
- R&D of a new general FPGA device using the Versal ACAP
 - Heterogenous acceleration (VCK190, VCK5000 evaluation kit)
 - Al engine, DPU

Acceleration on Versal ACAP platform

Summary and prospects

- Belle II TDAQ system was designed to handle 30 kHz level 1 trigger
- NN and DNN with hardware based CDC L1 track trigger to improve background rejection
- GNN with software based offline CDC track finder to improve the efficiency of displaced vertex tracks
- Not covered in the talk: GNN with hardware based clustering trigger for Belle II is under commissioning
- Target the upgrade of ongoing and future collider projects
 - ML implementation on heterogenous computing system for acceleration

Backup

FPGA implementation path of ML algorithm

Al engine structure

Figure 1: Conceptual Overview of the ADF Graph

Figure 4: AI Engine

Figure 2: AI Engine Array

UG1079

Figure 3: AI Engine Tile Details

Fixed-Point Vector Unit Floating-Point Vector Unit

Instruction Fetch & Decode Unit

Stream Interface

X25020-011321

Kernel optimization for latency

			0.755	2.052.00										12,125 -
NAME	VALUE	0.000	0.755 US 000 us 12.000	000 us	4.000000) us	6.000000	us	8.000000	us	10.0000	90 us	12.00000	^{13.125} u
√Tile(24,0)	_main		hid1_71to27											
√Core														
√Functions														
_main_init	inactive													
_main	lock stall	\vdash												
∽hid1 (hid1_71to27_leakyrelu(adf::io_buffer	inactive								111		- - -			
in1 (in[0])	2.997:2.797:2.447:0.									2.997:	2.797:2.	447:0.0	00	
out1 (out[0])	35.479			•••										
_fini	inactive													
cxa_finalize	inactive													
f32_to_f64(unsigned int)	inactive					$\left \right $	+++		+	+ $+$	+++	+		
f64_mul(unsigned long long, unsigned lon	inactive					I I I	▋▋₿⅃ℍ₿			▋┨╢┨╢	8-8-8	▋▋₿₿	1	
f64_to_f32(unsigned long long)	inactive	\vdash			+++	++						+++		
softfloat_countLeadingZeros64(unsigned l	inactive	\vdash												
softfloat_mul64To128M(unsigned long lor	inactive	<u> </u>			\mathbf{H}		нн							
softfloat_normSubnormalF32Sig(unsigned	inactive	\vdash												
softfloat_normSubnormalF64Sig(unsigned	inactive	\vdash												
softfloat_roundPackToF32(bool, int, unsig	inactive	<u> </u>				\rightarrow		++	+++	++		+++		
softfloat_roundPackToF64(bool, int, unsig	inactive	\vdash			+ + +				+++	$\left \right $				
softfloat_propagateNaNF64UI(unsigned lo	inactive	\vdash												
> Core Lock Requests														

before

Optimization	Before	After
Dense layer	Vector algorithm	Vector algorithm
Act. function	Scalar algorithm	Vector algorithm
Latency	~12us	~1.6us

					8,388.800 ns	
NAME	VALUE	6,000.000 ns	6,774.400 ns	8,000.000 n		9,000.000 ns
> Tile(23,0)						
√Tile(24,0)	_main	_main	hid1_71to27_leakyrelu(adf::io	buffer <float,< td=""><td></td><td>m</td></float,<>		m
∽Core						
✓Functions						
_main_init	inactive –					
_main	_main	lock stall				lock
∽hid1 (hid1_71to27_leakyrelu(a	adf::io_buffer inactive		hid1_71to27_leakyrelu(adf::io	buffer <float,< td=""><td></td><td></td></float,<>		
input (in[0])	2.344:2.220:2.352:2.				2.344:2	.220:2.352:2.294/2.
weight (in[1])	0.000:0.000:0.000:0.			0.000:0.000:0.000	:0.000/0.000:	0.000:0.000:0.000
output (out[0])	3108222.250:81374: -				310	8222.250:81374 <mark>32.00</mark>
_fini	inactive					
cxa_finalize	inactive					
> Core Lock Requests						
> DMA						
> Locks						
∽Network						
> Inputs						
> Outputs						
> Tile(24,1)						
> Interface Tile(24)						
> Tile(25.0)	main			main	1,614.400 ns	

after

Motivations of trigger-DAQ upgrade

Physics

- Tau trigger efficiency now is >95% (to be pre-scaled if luminosity is high)
- Low multiplicity trigger efficiency (to be pre-scaled pre-scaled if luminosity is high) •
- Low-momentum track trigger efficiency •
- "Anomaly" trigger
 - Design a special trigger line for some specific physics channel
- Trigger efficiency of displaced vertex

Current hardware limitation:

- DAQ system is designed to handle 30 kHz •
 - L1 latency 4.4 us (SVD APV25 buffer)
 - CDC DNN trigger latency ~500 ns, latency already limited more large model
- ulletfull HLT: 15 units (7000 CPU cores)
- TTD system: VME bus limit, no more than 3 triggers within 80 clock (624ns) •

Vertex detector is planed to be upgraded during long shutdown 2 (after 2028) Latency limit target: 5 us -> 10 us (5.2 us KLM, 9 us TOP, considering upgrade)

- New TTD hardware: VME bus -> Ethernet
- New trigger board (UT5): Versal ACAP

L1 trigger rate will reach to ~20 kHz at $0.9x10^{-35}$ cm⁻² s⁻¹ (13 HLT units, w/o hyperthreading), planed

- Simulate 1 million events with over 4 million tracks
 - Train: Validation = 4:1
- Training samples contain different topologies that cover all interested event features, to not bias the model, **no conservation laws involved here!** \rightarrow crucial step to be agnostic about the physics processes
- Sample features
 - Low momentum tracks forming circles in the CDC ($P_t < 0.4$ GeV) <-> High momentum tracks
 - Short tracks <-> tracks penetrate all CDC layers
 - Small opening angle <-> well isolated two tracks

Development of GNN tracking algorithm

- Belle II MC simulation data-set (Own simulation)
 - μ + μ (particle gan)
 - 0.3 GeV/c < P < 5.0 GeV/c
 - Theta: 30°-120°, within on barrel CDC
 - Phi: 0-2π
 - Train: Validation: Test = 3: 1: 1
 - noise : /group/belle2/dataprod/BGOverlay/early_phase3/release-06-00-05/overlay/BGx1/set0/

Development of GNN tracking algorithm

- Graph Neural Network edge classifier
- Input network
 - Node features embedded in latent space
- Graph model
 - Edge network computes weights for edges using the features of the start and end nodes Node network computes new node features using the edge weight aggregated features s of the connected nodes and the nodes' current features
 - lacksquare
 - MLPs
 - 8 graph iterations
- Strengthen important connections and weaken useless or spurious ones

Hit selection efficiency: 98.4% Hit selection purity

Performance step-by-step

 $\mu + \mu$ - (particle gan)

1. Original MC data sample

- μ + μ (use particle gan)
- P (0.3GeV 5.0GeV)
- 2. Remove noise via GNN
- 3. Transform to Conformal plane

•
$$X=2x/(x^2+y^2)$$
 $Y=2y/(X^2+y^2)$

 Circle passing the origin transform into a straight line

- 4. Transform to 'α' parameter plane
 - Hits connected in the X-Y plane in a straight line
 - α as the angle between the straight line and X axis
 - The parameter space as cosα and sinα
- 5. DBSCAN clustering in 'α'parameter plane
 - Density-Based Spatial Clustering of Application with Noise
 - Hits in a cluster are considered to be in the same track

Cluster efficiency: 97.7% Cluster purity : 96.9%

