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https://home.cern/science/physics/standard-model

Matter

Forces

Standard Model (SM) of Particle Physics



3

Higgs Boson -- One of the biggest successes of SM

● Predicted in the 1960’s
● By 1989, there’s a book named

“The Higgs Hunter’s Guide”
● Discovered in 2012

○ Simultaneously by ATLAS and CMS 
experiments

● All properties measured to be 
consistent with the SM 
predictions -- so far

● Q: Does SM describe everything 
perfectly well?

https://www.science.org/content/article/long-
last-physicists-discover-famed-higgs-boson



Shortcomings of the SM

● Doesn’t explain gravity
○ The model seems incomplete at 

the minimum
● Dark matter and dark energy
● Neutrino properties

○ Non-zero masses
○ Antiparticle of itself?

● A few more…
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Search for New Physics beyond the SM
As an experimentalist…

● Take known deviations from SM
○ Eg: Dark matter, neutrino, etc. 

● Chase after them until we understand the source of 
the deviations
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Rare event search experiments

● Finding a needle in a haystack…
● Examples:
● Direct detection of WIMP dark matter

○ <O(1) events/(30 kg years)
○ Signal region <10 keV

● Neutrinoless double beta decay (0vbb)
○ <O(1) events/(500 kg year)
○ Signal region ~ few MeV

● Neutrino coherent scattering (CEvNS)
○ ~O(1) events/(10 kg years)
○ Signal region <1 keV

● Rare and low energy signal require sensitive
detectors in a quiet environment 6Numbers benchmarked for Xe-based experiments

taken from Hyun Su Lee’s presentation in CARLO 2016 here

https://indico.cern.ch/event/472938/contributions/2135401/attachments/1273489/1888345/Rare_event_search_CALOR2016.pdf


Starting with Dark Matter Search as an 
example…
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The Evidence for Dark Matter
Galactic Rotation Curves Gravitational Lensing

smithsonianmag.com

~5 times as much dark matter in the 
universe as regular matter 8

https://en.wikipedia.org/wiki/Galaxy_rotation_curve



DM Search Strategies

Complementarity between different types of experiments
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The Dark Matter Wind

● Dark matter apparently blows from Cygnus
● Our speed relative to the dark matter halo is ~220 km/s
● ~100,000 particles/cm2/sec
● About 20 million/hand/sec
● Figure taken from the CYGNUS project 10

https://iopscience.iop.org/article/10.1088/1742-6596/1468/1/012044/pdf


Dark matter direct detection
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Dark matter direct detection

● If it’s that simple, why haven’t we seen it?
○ Small interaction probability → Big detectors
○ Small energy deposition when interacting → More sensitive detectors
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SuperCDMS @ SNOLAB
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Dark Matter 
Candidates
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~10 GeV down to eV
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Dark Matter Search Playground

ArXiv:2203.08084, 2021
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Dark Matter Search Playground

ArXiv:2203.08084, 2021

Bigger detectors

Better detectors
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Dark Matter Search Playground

SuperCDMS searches 
for low mass DM

ArXiv:2203.08084, 2021

Bigger detectors

Better detectors



The SuperCDMS SNOLAB Experiment
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Facility:
● 6000 m.w.e. overburden
● 15 mK base temperature
● Initial Payload: ~30 kg total

○ 4 stacks of six detectors 
(“towers”)

○ 2 iZIP: 10 Ge / 2 Si
○ 2 HV: 8 Ge / 4 Si

Electron Recoil Backgrounds:
● External and facility: O(0.1 /keV/kg/d)
● Det. setup: O(0.1(Ge)-1(Si) /keV/kg/d)
● Total: O(0.1-1 /keV/kg/d)

Facility designed to be dominated by solar 
neutrinos in NR background

Vibration isolation:
● Seismic: spring loaded platform
● Fridge on active vibration damper
● Cryo coolers: soft couplings

○ Braids, bellows
● Copper cans: hanging on Kevlar ropes



● Dark matter particle interaction
deposits energy

● Detectors measure energy in forms of
○ Ionization → Charge
○ Scintillation → Light
○ Heat → Phonons

● Stealth signal calls for sensitive
detectors
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Dark matter direct detection detectors
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Cryogenic Calorimeter
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Absorber

Thermal Bath

Weak Thermal Link

Transition-Edge Sensor (TES)Detector Schematic

Cryogenically cooled in dilution fridge
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QET Design and Transport
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SuperCDMS Detector Technology
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iZIP Detector:

- Prompt phonon and ionization signals allow 
for discrimination between nuclear and electron 
recoil events

HV detector:

- Drifting electrons/holes across a potential (Vb) 
generates a large number of phonons (Luke 
phonons).

- Enables <100 eV low thresholds!
- Trade-off: No event-by-event NR/ER 

discrimination

Discriminating

Low Threshold



SuperCDMS Detectors: Posing for the Cameras

24

● Detectors made of high-purity Ge and Si Crystals
● Si (0.6 kg each) provides sensitivity to lower 

dark matter masses
● Ge (1.4 kg each) provides sensitivity to lower 

dark matter cross-sections
● Low operation temperature: ~15mK 

● Athermal phonon measurement with TESs
● Ionization measurement (iZIP) with HEMTs

● Multiple channels per detector to identify
event position 

● Initial payload will consist of 4 stacks of six detectors 
(“towers”)

● 2 iZIP: 10 Ge / 2 Si
● 2 HV: 8 Ge / 4 Si

iZIP

HV



Understanding Background (the haystack)

● Background: extensive material
cleaning, tracking and screening

● eTraveller: Bookkeeping tool to 
keep track of material movement
○ Precision accounting for 

cosmogenic activations
● BGExplorer: Background estimate 

based on material assay results and 
Geant4 based simulations
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https://github.com/bloer/bgexplorer-demo



SuperCDMS @ SNOLAB Construction Status

26

Poly/Water-Pb-
Poly Shielding



SuperCDMS @ SNOLAB Construction Status
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Poly/Water-Pb-
Poly Shielding



July 2022 vs Nov. 2024
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Cryogenic Underground TEst facility (CUTE)

● Friendly neighbour
● Taking on critical mission of detector 

testing
○ Exercise and debug detectors 

before SuperCDMS cryostat is in 
place

● Same environment, same electronics 
→ similar challenges expected

● First tower test completed earlier this 
year

● Stay tuned for detailed analysis 
results! 29



Detector testing at CUTE
● Operated a HV tower in CUTE
● Gained a tremendous amount of

understanding about the detectors and
the SNOLAB environment
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Exploring the sensor limit:
HV → HVeV Detectors
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HVeV: Prototype HV detector
● Gram scale
● eV level resolution

HVeV
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Cleanroom located ~100 m 
underground at Fermilab

Two more facilities for HVeV R&D and operations

Mobile refrigerator, can be deployed in 
calibration facilities
Camping at MP basement now



Single electron-hole pair sensitivity

● “Version 2” of HVeV detectors
● ~3 eV resolution
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Fill-in between peaks: 
charge trapping and 
impact ionization

● Calibrated to hundreds of keV
● Energy resolution < 5% over the full 

range



Understanding the detector:
Nuclear recoil calibration

● Silicon yield (Y) measured down to 100 eV
● Germanium measurement in preparation
● Also exploring even lower energy scale

○ Exploring Lower energy neutrons with 51V target
34
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Latest Detector Performance
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Detector Spectrum Energy of Random Triggers

● “Version 3” of HVeV detectors
● Lower transition temperature

○ Operated at NEXUS and CUTE

● Achieve 𝜎b = 1.097 eV ± 0.003 eV
● Below Silicon bandgap!
● Also with SiO2 blocking layer

○ Study of leakage ongoing



Probing the Neutrinos

● Detector performance approaching
neutrino background

● Neutrino interaction through
Coherent Elastic Neutrino-Nucleus
Scattering (CEvNS)
○ First detection in 2017

● Find a neutrino source to study it
thoroughly

36
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Slide from Nicolas MARTINI, 
Magnificent CEvNS, 2024
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Institut Laue–Langevin (ILL)

European Synchrotron Radiation Facility (ESRF)

Grenoble, France
Photo credit: Valentina Novati
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CEvNS event rate
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Slide from Nicolas MARTINI, 
Magnificent CEvNS, 2024
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Slide from Nicolas MARTINI, 
Magnificent CEvNS, 2024
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Slide from Nicolas MARTINI, 
Magnificent CEvNS, 2024
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Slide from Nicolas MARTINI, 
Magnificent CEvNS, 2024
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Potential Ricochet Phase 2

Directions for improvement:

● Large detector array
● Lower threshold
● Faster detector response
● More variety of detector

target materials
47

Potential solution:

● TES-based detector 
○ Remember the 1 eV prototype?

● “Remote readout”
● Microwave multiplexing readout



Modular TES detector
● Thermally couple a TES thermometer onto 

an arbitrary target
● Target can be almost any solid: 

semiconductor, metal, superconductor, etc
○ 12 eV resolution achieved on 1 gram silicon
○ 0.85 keV resolution on 21 gram Li2MoO4

■ Excellent detector also for neutrinoless 
double beta decay!

■ Ask me later if you’re interested
● Further improvements to come

48

NIM A 1057 (2023) 168765

J.Low Temp.Phys. 211 (2023) 5

https://arxiv.org/pdf/2406.02025



Conclusions
● Searching for Physics beyond the Standard Model remains an 

intriguing field
● Cryogenic phonon detectors play a critical role
● SuperCDMS well suited for low mass DM searches

○ Low threshold enables low mass NR searches
○ HVeV detectors achieve 1 eV phonon resolution and 0.01 

charge resolution
● Ricochet commissioning at ILL started

○ First batch of detector works well, more to come
○ Expect 7 reactor cycles in 2025-2026
○ Next generation detector in the development

● Stay tuned!
49



Bonus Slides
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Adjunct
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Neutrinoless double-beta decay (0ν2β)

● Double-beta decay with the emission of two neutrinos
●

● 0ν2β is a hypothetical nuclear process

● Fundamental question:
Is neutrino its own anti-particle?
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Iterations of HVeV dark matter experiments

56

● Burst events detection and study
● Hypothesis: originated by SiO2 in 

the detector holder (PCB)

● Coincidence measurement
● Confirmed external origin of this 

background and its reduction with 
coincidence detections

● Removed PCB from detector 
holder

● Elimination of quantized 
background above 1eh peak

HVeV Run 2 HVeV Run 3 HVeV Run 4

D. W. Amaral et al. Phys. Rev. D 102, 091101(R)



Low mass dark matter search background challenges

57

● Sub 1-eh peaks
● Hypothesized from 

unpolished sidewalls
● Will attempt sidewall 

etching/polishing

● 1-eh peak
● Could be from electrode 

leakage, light leakage, etc.
● Attempting electrode blocking 

materials for mitigation
● Also building better light tight 

enclosures

● Low energy excess
● Evidence hints different ionization 

from ER and NR
○ “Heat only”

● Unpacking ER/NR/Heat Only 
components by operating with 
different NTL gains



Silicon Compton Steps

● Using Compton steps:
● Irradiate with O(100) keV 

gamma rays.
○ Scattering with atomic electrons.

● Scattering probability 
proportional to number of 
electrons that can be excited

○ Binding energies creates step-like 
structures

● Can be used for calibration 
down to 100 eV

58
Similar structure confirmed by CCD data from 
DAMIC-M (PhysRevD 106, 092001, 2022)

(eV)



Silicon Compton Steps
Ongoing efforts
● Cs-137 calibration data with Si HVeV detector 

at NEXUS
● Expected features:

○ 662 keV Cs gamma line
○ 447 keV Compton edge
○ 8.04 keV Copper x-ray

■ Detector housing!
○ Si 1.84 keV Compton step
○ Si 99/150 eV Compton steps

● Cross-calibration with optical photon 
calibration at high voltage

○ Single e-h peaks visible up to a few keV
● Results expected this year! 59



SuperCDMS Detectors & Dark Matter Mass Scales
● Dark Matter Mass Ranges

○ "Traditional" Nuclear Recoil: Full discrimination, ≳ 5 GeV
○ Low Threshold NR: Limited discrimination, ≳ 1 GeV
○ HV Detector: HV, no discrimination, ∼0.3 – 10 GeV
○ Migdal & Bremsstrahlung: no discrimination, ∼0.01 – 10 GeV
○ Electron recoil: HV, no discrimination, ∼0.5 MeV – 10 GeV
○ Absorption (Dark Photons, ALPs): HV, no discrimination, ∼1 eV – 500 keV (“peak search”)
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•LMO-TES readout 
• RMD crystal in NEXUS measurement setup

21 g - 2 cm cube
• 0.5 ms rise-time
• A full size CUPID detector with this response would result in a remaining pile-up 

background of 5 x 10-6 counts/keV/kg/yr

61

TES readout of Li2MoO4 for 

TES 
chip

LMO pulse 
response
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TES 
chip

•LMO-TES readout 
• Good baseline resolution in 1st test
• Sufficient dynamic range
• Energy dependent broadening to be understood
• Sensitivity to surface events near Au film 

• Possibility of surface background suppression to be investigated

TES readout of Li2MoO4 for 



Detecting Low Mass DM

• Low mass WIMP models 
predicts low recoil 
energies

• Direct detection 
experiments often limited 
by energy resolution 
and threshold

• Electron recoil models 
also require ideally single 
charge sensitivity

63

Kurinsky et al., 2016


