

Probing New Physics with Cryogenic Detectors

Ziqing Hong, University of Toronto

Standard Model (SM) of Particle Physics

Higgs Boson -- One of the biggest successes of SM

- Predicted in the 1960's
- By 1989, there's a book named "The Higgs Hunter's Guide"
- Discovered in 2012
 - Simultaneously by ATLAS and CMS experiments
- All properties measured to be consistent with the SM predictions -- so far
- Q: Does SM describe everything perfectly well?

https://www.science.org/content/article/long- 3 last-physicists-discover-famed-higgs-boson

Shortcomings of the SM

- Doesn't explain gravity
 - The model seems incomplete at the minimum
- Dark matter and dark energy
- Neutrino properties
 - Non-zero masses
 - Antiparticle of itself?
- A few more...

Standard Model of Elementary Particles

Search for New Physics beyond the SM

As an experimentalist...

- Take known deviations from SM
 Eg: Dark matter, neutrino, etc.
- Chase after them until we understand the source of the deviations

Fermilab

Rare event search experiments

- Finding a needle in a haystack...
- Examples:
- Direct detection of WIMP dark matter
 - <O(1) events/(30 kg years)
 - Signal region <10 keV
- Neutrinoless double beta decay (0vbb)
 - <O(1) events/(500 kg year)
 - Signal region ~ few MeV
- Neutrino coherent scattering (CEvNS)
 - ~O(1) events/(10 kg years)
 - Signal region <1 keV
- **Rare** and **low energy** signal require sensitive detectors in a quiet environment

Numbers benchmarked for Xe-based experiments6taken from Hyun Su Lee's presentation in CARLO 2016 here

Starting with Dark Matter Search as an example...

The Evidence for Dark Matter

Galactic Rotation Curves

https://en.wikipedia.org/wiki/Galaxy_rotation_curve

Gravitational Lensing

smithsonianmag.com

~5 times as much dark matter in the universe as regular matter

DM Search Strategies

Complementarity between different types of experiments

The Dark Matter Wind

- Dark matter apparently blows from Cygnus
- Our speed relative to the dark matter halo is ~220 km/s
- ~100,000 particles/cm²/sec
- About 20 million/hand/sec
- Figure taken from the CYGNUS project

Dark matter direct detection

Dark matter direct detection

- If it's that simple, why haven't we seen it?
 - \circ Small interaction probability \rightarrow Big detectors
 - \circ Small energy deposition when interacting \rightarrow More sensitive detectors

SuperCDMS @ SNOLAB **CUTE SuperCDMS SNOLAB Clean room** 2 km SuperCDMS Experiment **Cryogenics plant** 13

Radon filter plant

Dark Matter Search Playground

Dark Matter Search Playground

Dark Matter Search Playground

The SuperCDMS SNOLAB Experiment

Electron Recoil Backgrounds:

- External and facility: O(0.1 /keV/kg/d)
- Det. setup: O(0.1(Ge)-1(Si) /keV/kg/d)
- Total: O(0.1-1 /keV/kg/d)

Facility designed to be dominated by solar neutrinos in NR background

Facility:

- 6000 m.w.e. overburden
- 15 mK base temperature
- Initial Payload: ~30 kg total
 - 4 stacks of six detectors ("towers")
 - 2 iZIP: 10 Ge / 2 Si
 - 2 HV: 8 Ge / 4 Si

Vibration isolation:

- Seismic: spring loaded platform
- Fridge on active vibration damper
- Cryo coolers: soft couplings
 - Braids, bellows
- Copper cans: hanging on Kevlar ropes ¹⁸

Dark matter direct detection detectors

- Dark matter particle interaction deposits energy
- Detectors measure energy in forms of
 - $\circ \quad \text{Ionization} \rightarrow \text{Charge}$
 - $\circ \quad \text{Scintillation} \to \text{Light}$
 - $\circ \quad \text{Heat} \to \text{Phonons}$
- Stealth signal calls for sensitive detectors

SuperCDMS Detector Technology

Discriminating

JZIP Detector:

- Prompt **phonon** and **ionization** signals allow for discrimination between nuclear and electron recoil events detector:
 - Drifting electrons/holes across a potential $(V_{\rm b})$ generates a large number of phonons (Luke phonons).
 - Enables <100 eV low thresholds!
 - Trade-off: No event-by-event NR/ER discrimination

Sensors measure Et, and neh

SuperCDMS Detectors: Posing for the Cameras

- Detectors made of high-purity Ge and Si Crystals
 - Si (0.6 kg each) provides sensitivity to lower dark matter masses
 - Ge (1.4 kg each) provides sensitivity to lower dark matter cross-sections
- Low operation temperature: ~15mK
 - Athermal phonon measurement with TESs
 - Ionization measurement (iZIP) with HEMTs
- Multiple channels per detector to identify event position
- Initial payload will consist of 4 stacks of six detectors ("towers")
 - 2 iZIP: 10 Ge / 2 Si
 - 2 HV: 8 Ge / 4 Si

https://github.com/bloer/bgexplorer-demo

Understanding Background (the haystack) component material Background: extensive material cleaning, tracking and screening • eTraveller: Bookkeeping tool to keep track of material movement Precision accounting for Tower num cosmogenic activations **BGExplorer: Background estimate** sourceclass source based on material assay results and Geant4 based simulations βαckγroµnd **E**Xplorer 25

Ο

SuperCDMS @ SNOLAB Construction Status

SuperCDMS @ SNOLAB Construction Status

Seismic Platform

July 2022 vs Nov. 2024

Cryogenic Underground TEst facility (CUTE)

- Friendly neighbour
- Taking on critical mission of detector testing
 - Exercise and debug detectors
 before SuperCDMS cryostat is in
 place
- Same environment, same electronics
 → similar challenges expected
- First tower test completed earlier this year
- Stay tuned for detailed analysis results!

Detector testing at CUTE

- Operated a HV tower in CUTE
- Gained a tremendous amount of understanding about the detectors and the SNOLAB environment

30

Exploring the sensor limit: $HV \rightarrow HVeV$ Detectors

HVeV: Prototype HV detector

- Gram scale
- eV level resolution

Two more facilities for HVeV R&D and operations

Mobile refrigerator, can be deployed in calibration facilities Camping at MP basement now

Cleanroom located ~100 m underground at Fermilab

Single electron-hole pair sensitivity

- "Version 2" of HVeV detectors
- ~3 eV resolution

- Calibrated to hundreds of keV
- Energy resolution < 5% over the full range

091101(R), 2020 031101(R), 2020 2021 032010 ò D. W. Amaral *et al.*, Phys. Re F. Ponce, et al., Phys. Rev. D R. Ren et al., Phys. Rev. D 1 Phys.

Understanding the detector: Nuclear recoil calibration

- Silicon yield (Y) measured down to 100 eV
- Germanium measurement in preparation
- Also exploring even lower energy scale
 - Exploring Lower energy neutrons with ⁵¹V target Ο

Latest Detector Performance

- "Version 3" of HVeV detectors
- Lower transition temperature

eV)

Ē

Size =

(Bin

Counts

Operated at NEXUS and CUTE

- Achieve $\sigma_{h} = 1.097 \text{ eV} \pm 0.003 \text{ eV}$
- Below Silicon bandgap!
- Also with SiO₂ blocking layer
 - Study of leakage ongoing

Energy of Random Triggers

Detector Spectrum

Probing the Neutrinos

- Detector performance approaching neutrino background
- Neutrino interaction through Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)
 - First detection in 2017
- Find a neutrino source to study it thoroughly

RICORFICER a reactor neutrino observatory

Grenoble, France Photo credit: Valentina Novati

Institut Laue–Langevin (ILL)

European Synchrotron Radiation Facility (ESRF)

ILL-H7 reactor site

- 58 MW nominal thermal power
- ~11 evts/day/kg (goal : 50 eV_{nr} threshold)
- ~15 m.w.e of overburden
- 3 to 4 cycles per year : **ON/OFF modulation** to subtract uncorrelated backgrounds

Slide from Nicolas MARTINI, Magnificent CEVNS, 2024 Fast and thermal neutron flux characterized : RICOCHET COII. EPJC 83 (2023), 20

Reactogenic neutrons negligible (~10%) Targeted neutron background levels achievable to reach **S/B=1** Slide from Nicolas MARTINI, Magnificent CEvNS, 2024

CryoCube detectors

Particle ID based on Ionization/Heat ratio

$$Q = E_{ion}/E_{recoil}$$

- Electronic recoils : Q = 1
- Nuclear recoils : Q ~ 0.3 (Lindhard)

Planar : Fiducial volume = 98.6%

No surface events rejection

FID : Fiducial volume = 62%

Surface events rejection

Final detector design will be based on on-site data-driven CEvNS sensitivity

CryoCube specifications . MiniCryoCube:

3 Ge bolometers with their cold electronics (1 K)

CryoCube (Spring 2025): 3 MiniCryoCubes per level, 2 levels → Array of 18 x 38 g @ ~10 mK

- Heat resolution: 20 eV (RMS)
- Ionization resolution:
 20 eVee (RMS)
- Timing resolution:
 ~100 us @ 100 eV
- Detector payload:
 680 g
- Two detector technologies: planar and FID electrodes

→ Achieve Particle ID down to O(10) eV with a rejection > 10^3

Paper on Ionization performances of the MiniCryoCube: RICOCHET Coll. EPJC **84** (2024), 186

Slide from Nicolas MARTINI, Magnificent CEvNS, 2024

Commissioning @ ILL

Outer shielding (Mar 2023): Lead for gammas: 20 cm Polyethylene for neutrons: 35 cm Soft iron for magnetic field: ~1 ton

Cryostat installation: Nov 2023 - Feb 2024

RUN012 (Feb 2024): Cryogenic validation run → Minimum temperature without payload: 8.6 mK

Commissioning @ ILL

First in-situ detector performance assessment

Reactor OFF data

Selection of ER events:

- Ionization energy:
 E_{ion} > 400 eV_{ee}
- Ionization yield:

Q > 0.4

Baseline resolutions (preliminary):

- Ionization: 40-45 eV_{ee}
- Heat: 35-40 eV_{ee}

Commissioning @ ILL

First in-situ detector performance assessment

Reactor ON data

Selection of ER events:

- Ionization energy:
 E_{ion} > 400 eV_{ee}
- Ionization yield:

Q > 0.4

Baseline resolutions (preliminary):

- Ionization: 45-47 eV
- Heat: 25-27 eV_{ee}

Similar ON/OFF performances

Prospects

2024:

- Finalization of outer and cryogenic muon veto installation
- Commissioning of readout electronics and synchronization
- First data-driven CEvNS sensitivity estimation from commissioning phase

Spring 2025:

- Completion of the full CryoCube payload and dedicated electronics
- Beginning of the RICOCHET CryoCube neutrino science phase

2025-2026:

• Cumulate 7 ON/OFF reactor cycles to achieve nominal exposure

- Large detector array
- Lower threshold
- Faster detector response
- More variety of detector target materials

Potential solution:

- TES-based detector
 - Remember the 1 eV prototype?
- "Remote readout"
- Microwave multiplexing readout ⁴⁷

NIM A 1057 (2023) 168765

Modular TES detector

- Thermally couple a TES thermometer onto an arbitrary target
- Target can be almost any solid: semiconductor, metal, superconductor, etc
 - **12 eV** resolution achieved on 1 gram silicon
 - **0.85 keV** resolution on 21 gram Li_2MoO_4
 - Excellent detector also for neutrinoless double beta decay!
 - Ask me later if you're interested
- Further improvements to come

Conclusions

- Searching for Physics beyond the Standard Model remains an intriguing field
- Cryogenic phonon detectors play a critical role
- **SuperCDMS** well suited for low mass DM searches
 - Low threshold enables low mass NR searches
 - HVeV detectors achieve 1 eV phonon resolution and 0.01 charge resolution
- **Ricochet** commissioning at ILL started
 - First batch of detector works well, more to come
 - Expect 7 reactor cycles in 2025-2026
 - Next generation detector in the development
- Stay tuned!

Bonus Slides

Our team

Pekka Sinervo (PI)

Miriam Diamond (PI)

Leslie Groer (technician)

Maddy Zurowski Peter McNamara (post-doc) (post-doc)

Gillian Godden (grad)

Ata Sattari

(grad)

Imran Alkhatib (grad)

Enze Zhang (grad)

Antoine Rehberg (grad)

Matthew Penner (grad)

Quark

Qubit

Warren Perry (grad)

Our team

Ziqing Hong (PI)

Tyler Reynolds (post-doc)

Ariel Zuniga & Vijay Iyer (post-docs)

Jeter Hall Adjunct (SNOLAB)

Andrew Kubik Adjunct (SNOLAB)

Matt Stukel Adjunct (SNOLAB)

Elspeth Cudmore (grad)

Mason Buchanan (grad)

Simon Harms (grad)

Weigeng Peng (grad)

Stefan, Tom, Birgit (post-doc neighbours)

Neutrinoless double-beta decay ($0v2\beta$)

- Double-beta decay with the emission of two neutrinos
- $2\vee 2\beta: (A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu_e}$

• 0v2β is a hypothetical nuclear process

$$\mathsf{Ov2}\beta:(A,Z)\to(A,Z+2)+2e^{-1}$$

 Fundamental question: Is neutrino its own anti-particle?

Iterations of HVeV dark matter experiments

- Burst events detection and study
- Hypothesis: originated by SiO₂ in the detector holder (PCB)

- Coincidence measurement
- Confirmed external origin of this
 background and its reduction with •
 coincidence detections

- Removed PCB from detector holder
- Elimination of quantized background above 1eh peak

Low mass dark matter search background challenges

Silicon Compton Steps

- Using Compton steps:
- Irradiate with O(100) keV gamma rays.
 - Scattering with atomic electrons.
- Scattering probability proportional to number of electrons that can be excited
 - Binding energies creates step-like structures
- Can be used for calibration down to 100 eV

Similar structure confirmed by CCD data from DAMIC-M (PhysRevD 106, 092001, 2022) 58

Silicon Compton Steps **Ongoing efforts**

- Cs-137 calibration data with Si HVeV detector at NEXUS
- Expected features:
 - 662 keV Cs gamma line Ο
 - 447 keV Compton edge Ο
 - 8.04 keV Copper x-ray Ο
 - **Detector housing!**
 - Si 1.84 keV Compton step Ο
 - Si 99/150 eV Compton steps Ο
- Cross-calibration with optical photon calibration at high voltage
 - Single e-h peaks visible up to a few keV Ο
- Results expected this year!

SuperCDMS Detectors & Dark Matter Mass Scales

- Dark Matter Mass Ranges
 - "Traditional" Nuclear Recoil:
 - Low Threshold NR:
 - HV Detector:
 - Migdal & Bremsstrahlung:
 - Electron recoil:
 - Absorption (Dark Photons, ALPs): HV, no discrimination,

Full discrimination,≥Limited discrimination,≥HV, no discrimination,~no discrimination,~HV, no discrimination,~HV, no discrimination,~

≥ 5 GeV
≥ 1 GeV
~0.3 - 10 GeV
~0.01 - 10 GeV
~0.5 MeV - 10 GeV
~1 eV - 500 keV ("peak search")

TES readout of Li_2MoO_4 for

- LMO-TES readout
 - RMD crystal in NEXUS measurement setup
 - 21 g 2 cm cube
 - 0.5 ms rise-time
 - A full size CUPID detector with this response would result in a remaining pile-up background of 5 x 10⁻⁶ counts/keV/kg/yr

TES readout of Li_2MoO_4 for

LMO-TES readout

- Good baseline resolution in 1st test
- Sufficient dynamic range
- Energy dependent broadening to be understood
- · Sensitivity to surface events near Au film
 - Possibility of surface background suppression to be investigated

Detecting Low Mass DM

- Low mass WIMP models predicts low recoil energies
- Direct detection experiments often limited by energy resolution and threshold
- Electron recoil models also require ideally single charge sensitivity

