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impact parameter, the electromagnetic fields2,25 generated by the elec-
tric currents carried by the colliding nuclei, quark polarization along 
the direction of its momentum (helicity polarization)27 and the spin 
alignment produced by fragmentation of polarized quarks12. Both the 
vorticity and electromagnetic fields can be represented as relativistic, 
rank-2 tensors having ‘electric’ (space-time) and ‘magnetic’ 
(space-space) components; each contributes to the quark polarization 
along the quantization axis n̂. For the Λ and Λ polarization in the rest 
frame, the only contribution is from the magnetic components, in which 
the vorticity contribution dominates. STAR measurements of the 
polarization of Λ and Λ (refs. 18,19) indicate that the magnetic components 
of the vorticity and the electromagnetic field tensor in total give2,12,25  
a negative contribution to ρ00 at the level of 10−5. Furthermore, the local 
vorticity loop in the transverse plane26, when acting together with coa-
lescence, gives a negative contribution to global ρ00. From a hydrody-
namic simulation of the vorticity field in heavy-ion collisions, it is known2 
that the electric component of the vorticity tensor gives a contribution 
on the order of 10−4. Simulation of the electromagnetic field in heavy-ion 
collisions indicates2 that the electric field gives a contribution on the 
order of 10−5. Fragmentation of polarized quarks contributes on the 
order of 10−5 and the effect is mainly present in transverse momenta 
much larger than a few GeV c−1 (ref. 12). Helicity polarization gives a 
negative contribution at all centralities27. Locally fluctuating axial 
charge currents induced by possible local charge violation gives rise 
to the expectation29 of ρ00(K*0) < ρ00(φ) < 1/3. The aforementioned 
mostly conventional mechanisms make either positive or negative 
contributions to φ-meson ρ00, but none of them can produce a ρ00 that 
is larger than 1/3 by more than a few times 10−4. Recently, a theoretical 
model was proposed on the basis of the φ-meson vector field coupling 
to s and s quarks2–6, analogous to the photon vector field coupled to 
electrically charged particles. In this mechanism, the observed global 
spin alignment is caused by the local fluctuation of the strong force 
field and can cause deviations of ρ00 from 1/3 larger than 10−4.

In 2008, the STAR Collaboration reported on a search for global spin 
alignment of φ(1020) and K*0(892) mesons for Au+Au collisions at a 
centre-of-mass energy per nucleon pair of s = 200 GeVNN , with n̂ 

oriented along L̂ (ref. 30). Owing to limited statistics at that time, no 
notable result was reported. In the present paper, we report the STAR 
Collaboration’s measurement of spin alignment for φ and K*0 vector 
mesons with much larger statistics and at lower collision energies.

The relevant features of the STAR experiment used for the spin align-
ment measurements are depicted in Fig. 2. The two charged daughter 
particles leave ionization trails inside the STAR Time Projection 
Chamber (TPC)31, with trajectories bent in the magnetic field, by which 
momentum information for charged particles can be reconstructed and 
the ionization energy loss (dE/dx) inside the gas of the TPC can be calcu-
lated. Furthermore, the time-of-flight information for particles can be 
obtained from the STAR Time-of-Flight (TOF) detector32 and, combining 
this with dE/dx measurements, the momentum and particle species 
for daughters can be determined. Figure 2 shows a three-dimensional 
view of φ and K*0 mesons decaying into their corresponding daughters 
inside the TPC. More details on the measurement procedure can be 
found in Methods.

Figure 3 shows ρ00 for φ and K*0 for Au+Au collisions at beam energies 
between s = 11.5NN  and 200 GeV. The centrality categorizes events 
on the basis of the observed multiplicity of produced charge hadrons 
emitted from each collision, in which 0% centrality corresponds to 
exactly head-on collisions, which produce the highest multiplicity, 
whereas 100% centrality corresponds to barely glancing collisions, 
which produce the lowest multiplicity. The STAR measurements pre-
sented in Fig. 3 are for centralities between 20% and 60%. The quanti-
zation axis (n̂) is taken to be the normal to the second-order event 
plane24 determined using TPC tracks. The second-order event plane, 
with its orientation corresponding to the elliptic flow of produced 
hadrons, serves as a proxy for the reaction plane. The φ-meson results 
are presented for 1.2 < pT < 5.4 GeV c−1 and |y| < 1.0. pT is the momentum 
in the plane transverse to the beam axis and rapidity y β= tanh z

−1 , with 
βz being the component of velocity along the beam direction in units 
of the speed of light. ρ00 for the φ meson is much greater than 1/3 for 
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Fig. 1 | A schematic view of the coordinate setup for measuring global spin 
alignment in heavy-ion collisions. Two nuclei collide and a tiny exploding 
QGP fireball, only a few femtometres across, is formed in the middle. The 
direction of the orbital angular momentum (L̂) is perpendicular to the reaction 
plane defined by the incoming nuclei when b ≠ 0. The symbol p→ represents the 
momentum vector of a particle. At the top-left corner, a φ meson, composed  
of s and s quarks, is depicted separately as a particle decaying into a (K+, K−) pair. 
In this example, the quantization axis (n̂) for study of the global spin alignment 
of the φ meson is set to be the same as L̂. θ* is the polar angle between the 
quantization axis and the momentum direction of a particle in the rest frame of 
the decay. A similar depiction can be found for a K*0 meson at the bottom-left 
corner.
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Fig. 2 | Schematic display of a single Au+Au collision at s = 27 GeVNN  in the 
STAR detector. A three-dimensional rendering of the STAR TPC, surrounded 
by the TOF barrel shown as the outermost cylinder. The beam pipe is shown in 
green and, inside it, gold ions travel in opposite directions along the beam axis 
(brown). Ions collide at the centre of the TPC and trajectories (grey lines) as well 
as TOF hits (blue squares) from a typical collision are shown. Reconstructed 
trajectories of a (K+, K−) pair originating from a φ-meson decay, as well as a K+ 
and π− from a K*0-meson decay, are shown as highlighted tracks.

Heavy Ion Collision

spin-orbital coupling⇒ spin-rotation coupling:

Hs = −s ·ω

⇒ ⟨s⟩ = S(S + 1)
3

ω

T
∼ 10−2

Contribution of uµ(x), T(x), Ωρσ(x)

Graph: STAR, Nature 614, 244-248 (2023)

B. Mashhoon, Phys. Rev. Lett. 61, 2639 (1988)
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Global Spin Alignment

Global spin alignment
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Figure 3: Global spin alignment of � and K⇤0 vector mesons in heavy-ion collisions. The

measured matrix element ⇢00 as a function of beam energy for the � and K⇤0 vector mesons within

the indicated windows of centrality, transverse momentum (pT ) and rapidity (y). The open symbols

indicate ALICE results 33 for Pb+Pb collisions at 2.76 TeV at pT values of 2.0 and 1.4 GeV/c for

the � and K⇤0 mesons, respectively, corresponding to the pT bin nearest to the mean pT for the 1.0

– 5.0 GeV/c range assumed for each meson in the present analysis. The red solid curve is a fit to

data in the range of
p

sNN = 19.6 to 200 GeV, based on a theoretical calculation with a �-meson

field 2. Parameter sensitivity of ⇢00 to the �-meson field is shown in Ref. 5. The red dashed line

is an extension of the solid curve with the fitted parameter G
(y)
s . The black dashed line represents

⇢00 = 1/3.

8

• ϕ meson Θ00 > 1/3 and too big

Θ00 −
1
3
∼ − ⟨s⟩2 ∼ −10−4

• K∗0 different from ϕ

Figure: STAR, Nature 614, 244-248 (2023)
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Physical Mechanisms

ϕ meson: δΘ00 = Θ00 −
1
3
≈ +cΛ + cB + cs + cF + cL + cH + cϕ + cg + · · ·

Physical mechanism δΘ00

cΛ : Quark coalescence + vorticity [1] magnitude ∼ −10−4

cB : Quark coalescence + EM-field [1] magnitude ∼ 10−4

cS : Spectrum splitting [2] unclear

cF : Quark fragmentation [3] magnitude ∼ 10−5

cL : Local spin alignment [4] magnitude ∼ −10−2

cH : Second-order hydro fields [5] unclear

cφ : Vector meson field [6] > 0, fit to data

cg : Glasma fields [7] < 0, magnitude unclear

[1]. Liang, Wang, PLB 629, 20 (2005);
Yang et al.PRC 97, 034917 (2018);
Xia et al.PLB 817, 136325 (2021);
Becattini et al.PRC 88, 034905 (2013).

[2]. Liu, Li, arXiv: 2206.11890;
Sheng et al., Eur.Phys.J.C 84, 299 (2024);
Wei, Huang, Chin.Phys.C 47,104015 (2023).

[3]. Liang, Wang PLB 629, 20 (2005);
[4]. Xia et al.PLB 817, 136325 (2021);

Gao, PRD 104, 076016 (2021).
[5]. Kumar, Yang, Gubler, PRD 109, 054038(2024);

Gao, Yang, Chin.Phys.C 48, 053114 (2024);
ZZ, Huang, Becattini, Sheng, 2024.

[6]. Sheng et al., PRD 101, 096005 (2020);
Sheng et al., PRD 102, 056013 (2020);
Sheng et al., PRL 131, 042304 (2023).

[7]. Muller, Yang, PRD 105, L011901 (2022);
Kumar et al., Phy. Rev. D108, 016020 (2023).

Z.-H. Zhang (FDU) Spin Alignment DEC 8th 4 / 18



Spin Density Matrix

• Free Lagrangian for neutral vector bosons

L = −1
4

FµνFµν +
1
2

m2 Aµ Aµ

• Mode decomposition

Âµ(x) =
3

∑
s=1

∫ d3k

(2π)3
1

2Ek

[
âs
kϵ

µ
s (k)e−ik·x + âs†

k ϵ
µ
s (k)eik·x

]
,

• Spin density matrix:

Θrs(k) ≡
Tr

(
ρ̂ âs†

k âr
k

)
∑r Tr

(
ρ̂ âr†

k âr
k

)

• Dependence on mode decomposition

âr†′
k = ∑

s
D1(R)sr âs†

k

Θ′(k)tu = ∑
rs

D1(R−1)trΘ(k)rsD1(R)su

with R belongs to the little group SO(3)

F. Becattini, Lect. Notes Phys. 987, 15 (2021)
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Spin Polarization
• Spin polarization vector and tensor:

Θ(k) =
1
3

I +
1
2 ∑

i
Si(k) si + ∑

ij
Tij(k) Σij

polarization tensor

polarization vector

Σij = s(isj) − s2δi/3, Si(k) = tr
{

Θ(k)si}, Tij(k) = tr
{

Θ(k)Σij}
• Covariant polarization vector and tensor:

Sµ(k) = ∑
i
Si(k)ϵµ

i (k),

T µν(k) = ∑
ij
Tij(k)ϵµ

i (k)ϵ
ν
j (k)

δΘ00(k) = −ϵ0
µ(k)ϵ

0
ν(k)T µν(k)

• They are the expectation values of

Ŝµ ≡ − 1
m

Ŵµ = − 1
2m

ϵµνρσ Ĵνρ P̂σ , T̂ µν ≡ Ŝ (µŜν) +
2
3

(
ηµν − 1

m2 P̂µ P̂ν

)
Pauli-Lubanski vector

F. Becattini, Lect. Notes Phys. 987, 15 (2021)

E. Leader, Spin in Particle Physics, Cambridge University Press (2023)
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Wigner function

• Future time-like (particle) Wigner function: Wµν(x, k) = Tr
{

ρ̂ Ŵµν(x, k)
}

Ŵµν(x, k) ≡ 1
2π

∫
d4s eik·s Âν(x − s

2
)Âµ(x +

s
2
)θ(k2)θ(k0)

• With ϵ
µ
r (k)ϵν

s (k)
∫

Σ
dΣ · k Ŵµν(x, k) =

1
2

δ(k2 − m2)θ(k0)âs†
k âr

k ,

Spin density matrix

Θrs(k) =
ϵ

µ
r ϵν

s
∫

Σ dΣ · k Wµν(x, k)∫
Σ dΣ · k f (x, k)

Scalar distribution f (x, k) = − ∆µν

(k) Wµν(x, k)

projection ⊥ to k
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Polarization vector and tensor in phase space
• Decomposition of Wigner function

Wµν
⊥ (x, k) = f (x, k)

{
−1

3
∆µν

(k) +
i

2m
ϵµνρσkρ Sσ(x, k) − T µν(x, k)

}
projected Wigner function

scalar distribution pseudo vector

tensor

Wµν
⊥ = ∆µα

(k)∆
νβ

(k)Wαβ

• Spin polarization vector and tensor in phase space

Sµ(x, k) = −i
ϵµναβkνWαβ(x, k)

m f (x, k)
, T µν(x, k) = −

W⟨µν⟩ (x, k)

f (x, k)

traceless and symmetric
part of Wµν

⊥

• Average over the hypersurface

Sµ(k) =

∫
Σ dΣ · k Sµ(x, k) f (x, k)∫

Σ dΣ · k f (x, k)
, T µν(k) =

∫
Σ dΣ · k T µν(x, k) f (x, k)∫

Σ dΣ · k f (x, k)
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Density Operator
• True density operator should be a constant

ρ̂true =
1
Z

exp
{
−

∫
ΣLE

dΣ tµ

(
T̂µν βν − 1

2
Ŝµρσ Ωρσ

)}stress tensor spin tensor

thermal current uν/T ∼ O(1) spin potential ∼ O(∂)

Canonical currents: Tµν = −Fµρ∂ν Aρ − gµνL, Sµρσ = −Fµρ Aσ + Fµσ Aρ

• Connect with the freeze-out

ρ̂true =
1
Z

exp
{

−
∫

ΣFO
dΣ tµ

(
T̂µν βν −

1
2

ŜµρσΩρσ

)
+

∫
Ω

dΩ
[

T̂µν(∂µ βν + Ωµν)−
1
2

Ŝµρσ∂µΩρσ

] }
local equilibrium

dissipation

Zubarev, Prozorkevich, Smolyanskii, Theo. and Math. Phys. 40, 821 (1979)

van Weert, Ann. of Phys. 140, 133 (1982)

Becattini, Buzzegoli, Grossi, Particles 2, 197 (2019)
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Cumulant Expansion

• Density operator ρ̂LE =
1

ZLE
exp

{
Â + B̂

}
, with ZLE = Tr

(
eÂ+B̂

)
“Gaussian" term Â(x) = −βν(x)P̂ν = −βν(x)

∫
Σ

dΣµ(y)T̂µν(y)

“Perturbative" terms B̂(x) = −
∫

Σ
dΣµ(y)

[
T̂µν(y)(βν(y)− βν(x))− 1

2
Ŝµ,ρσ(y)Ωρσ(y)

]

• Cumulant expansion: eÂ+B̂ = eÂ
∞

∑
n=0

B̂n, with B̂n ∼ (B̂)n ∼ O(∂n)

O(x) ≡ Tr
(

ρ̂LEÔ(x)
)
=

1
ZLE

Tr
(

eÂ(x)+B̂(x)Ô(x)
)

= ∑
n

〈
B̂nÔ(x)

〉
0

/
∑
n

〈
B̂n

〉
0
= ∑

n

〈
B̂nÔ(x)

〉
0,c

with ⟨· · ·⟩0 = Tr
(

eÂ · · ·
)/

Tr
(

eÂ
)
the expectation value under the Gaussian-type distribution.
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Zeroth-Order Result

• Cumulant expansion at 0th order: W(0)
µν (x, k) = Tr

{
ρ̂0 Ŵµν(x, k)

}

• “Free" distribution: ρ̂0 =
1

Z0
exp

{
−β(x) · P̂

}
W(0)

µν (x, k) = −δ(k2 − m2)θ(k0)∆(k)
µν nB(β(x) · k)

• f (x, k) = 3δ(k2 − m2)θ(k0)nB(β(x) · k) , Sµ(x, k) = 0 , T µν(x, k) = 0
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First-Order Gradient Expansion
Cumulant expansion: W(1)

µν (x, k) =
〈

B̂1Ŵµν(x, k)
〉

0,c
=

〈
B̂1Ŵµν(x, k)

〉
0
−

〈
B̂1

〉
0

〈
Ŵµν(x, k)

〉
0

B̂1 = −nµ∂αβν(x)
∫ 1

0
dλ

∫
P

d3y (y − x)αT̂µν(y − iλβ(x)) +
1
2

nµΩρσ(x)
∫ 1

0
dλ

∫
P

d3y Ŝµρσ(y − iλβ(x))

∫ 1

0
dλ

∫
P

d3y (y − x)α
〈

T̂µν(y − iλβ(x))Ŵξζ (x, k)
〉

0,c
=

∫ 1

0
dλ

∫
P

d3y
〈

Ŝµρσ(y − iλβ(x))Ŵξζ (x, k)
〉

0,c
=

WξζDα Tµν + WξζDα Tµν

WξζSµρσ + WξζSµρσ
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First-Order Result

• Recall that: W(1)
µν (x, k) = −nξ ∂α βλ(x)

∫ 1

0
dλ

∫
P

d3y(y − x)α
〈

T̂ξλ(y − iλβ(x))Ŵµν(x, k)
〉

0,c
+ spin potential contribution

W(1)
⊥,µν(x, k) = −iδ(k2 − m2)θ(k0)nB(1 + nB)∆

(k)
µρ ∆(k)

νσ

[
ϖρσ − Ξ [ρ

α

(
ξσ]α + δΩσ]α

)]thermal vorticity thermal shear

net spin potential: Ω − ϖ

with: Ξµν = ηµν − k̂µnν , k̂µ ≡ kµ/(n · k) , ϖρσ = ∂[σβρ] ∼ ω/T , ξρσ = ∂(σβρ)

• Spin polarization vector

Sµ(x, k) = −1 + nB
3m

ϵµνρσkν

(
ϖρσ + nρξσλkλ/Ek − Ξ ρ

α δΩσα
)

• Space-time reversal odd: W(1)
µν = −W(1)

νµ ⇒ T µν = 0 +O(∂2)
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Second-Order Gradient Expansion
• Based on the cumulant expansion:

B̂2 ≡
∫ 1

0
dλ1

∫ λ1

0
dλ2

∫
ΣFO

dΣµ1 (y1)dΣµ2 (y2)

×
[
∂α1 βν1 (x)∂α2 βν2 (x)(y1 − x)α1 (y2 − x)α2 T̂µ1ν1 (y(β)

1 )T̂µ2ν2 (y(β)
2 )

− 1
2

∂α1 βν1 (x)Ωρ2σ2 (x)(y1 − x)α1 T̂µ1ν1 (y(β)
1 )Ŝµ2 ,ρ2σ2 (y(β)

2 )

− 1
2

Ωρ1σ1 (x)∂α2 βν2 (x)(y2 − x)α2 Ŝµ1 ,ρ1σ1 (y(β)
1 )T̂µ2ν2 (y(β)

2 )

+
1
4

Ωρ1σ1 (x)Ωρ2σ2 (x)Ŝµ1 ,ρ1σ1 (y(β)
1 )Ŝµ2 ,ρ2σ2 (y(β)

2 )

]
+

∫ 1

0
dλ1

∫
ΣFO

dΣµ1 (y1)

[
−∂α1 ∂α2 βν1 (x)

1
2
(y1 − x)α1 (y − x)α2 T̂µ1ν1 (y(β)

1 )

+
1
2

∂α1 Ωρ1σ1 (x)(y1 − x)α1 Ŝµ1 ,ρ1σ1 (y(β)
1 )

]
• Wigner function induced by second-order hydro fields:

W(2)
µν (x, k) =

〈
B̂2Ŵµν(x, k)

〉
0,c

Z.-H. Zhang (FDU) Spin Alignment DEC 8th 14 / 18



Result: Spin Alignment

• PT even: W(2)
µν (x, k) = W(2)

νµ (x, k)

• Spin alignment induced by various hydro fields

δΘ00
∣∣
ϖ2 (x, k) = − 1

6
(1 + nB)(1 + 2nB)

[
ϵ

µ
0 ϵν

0 +
1
3

∆µν

(k)

] [
∆ρσ

(k) +
1

2m2 kρkσ

]
ϖρµϖσν

δΘ00
∣∣
∂ϖ

(x, k) = (1 + nB)

[
ϵ0

µϵ0
ν +

1
3

∆(k)
µν

]
1

6Ek
n[ρ ∂µ]ϖρσ

(
2ησν − k̂σnν

)
δΘ00|∂ξ(x, k) = (1 + nB)

[
ϵ0

µϵ0
ν +

1
3

∆(k)
µν

]
1

6Ek
∂αξρσ

[
(2nρ + γ2

k k̂ρ)ηαµησν

+ (ηρ(σ k̂α) + γ2
k k̂α k̂ρ k̂σ)nµnν − (ηρ(α + nρ k̂(α + γ2

k k̂ρ k̂(α)ησ)µnν
]
.

δΘ00|∂δΩ(x, k) = (1 + nB)

[
ϵ0

µϵ0
ν +

1
3

∆(k)
µν

]
1

6Ek
∂αδΩ ν

ρ

(
k̂αnρnµ − γ2

k k̂ρηµα − ∆αρ

(k)n
µ
)

.

· · ·
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Approximation

δΘ00
∣∣
∂ϖ
(x, k) = (1 + nB)

[
ϵ0

µϵ0
ν +

1
3

∆(k)
µν

] n[ρ ∂µ]ϖρσ

6Ek

(
2ησν − k̂σnν

)
.

• ∂xϖtz ∼ 0.3 fm−1 , ∂xϖtz/Ek ∼ 0.05

I. Karpenko, F. Becattini, Eur. Phys. J. C 77, 213 (2017)
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Pseudo-Gauge Dependence
• Pseudo-gauge dependence of density operator

ρ̂Belinfainte =
1

Z(B)
LE

exp
{
−

∫
Σ

dΣµT̂µν
B βν

}
ρ̂Canonical =

1

Z(C)
LE

exp
{
−

∫
Σ

dΣµ

[
T̂µν

B βν −
1
2

Ŝµρσ
C δΩρσ + Ŝλµν

C ξλν

]}
Vector meson: Ŝµρσ = −Fµρ Aσ + Fµσ Aρ, extra term from thermal shear

• e.g., vector meson’s spin polarization vector

Sµ
Belinfainte(x, k) = − 1 + nB

3m
ϵµνρσkν

(
ϖρσ + 2nρξσλkλ/Ek

)
Sµ
Canonical(x, k) = − 1 + nB

3m
ϵµνρσkν

(
ϖρσ + nρξσλkλ/Ek − Ξ ρ

α δΩσα

)
with δΩ → 0 still Sµ

C ̸= Sµ
B

• Extra contribution of thermal shear

F. Becattini, W. Florkowski, E. Speranza, PLB 789, 419 (2019)
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Conclusion and Outlook

• Flat freezeout hypersurface⇒ tensor polarization ∝ O(∂2)

δΘ00
∣∣
∂ϖ

(x, k) = (1 + nB)

[
ϵ0

µϵ0
ν +

1
3

∆(k)
µν

]
1

6Ek
n[ρ ∂µ]ϖρσ

(
2ησν − k̂σnν

)
• Pseudo-gauge dependence

Thank you!
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