Transport Model Study of QCD Phase Transition in Heavy-Ion Collisions

Qian Chen^{1,2,3}(陈倩)

Collaborators: Guo-liang Ma^{2,3}(马国亮)

Guangxi Normal University
 Fudan University
 Shanghai Research Center for Theoretical Nuclear Physics

Outline

□ Introduction

- QCD Phase Diagram
- Cumulants of Conserved Quantities
- Beam Energy Scan (BES) at RHIC

Method

A Multi-Phase Transport Model

□ Results

- Fluctuations of Net-Proton
- Fluctuations of Net-Kaon
- Incorporating FRG Into AMPT Model
 Summary and Outlook

Part 1: Introduction

QCD Phase Diagram

> QCD critical point (CP)?

Theoretical Predictions

> No consensus on the location of critical point!

Cumulants of Conserved Quantities

Net-baryon (B) (net-proton as proxy) Net-electric charge (Q) Net-strangeness (S) (net-kaon as proxy) Cumulant

$$\delta N = N - \langle N \rangle$$

$$C_{1} = \langle N \rangle = M$$

$$N: \text{ event-wise net-particle multiplicity}$$

$$C_{2} = \langle (\delta N)^{2} \rangle = \sigma^{2}$$

$$C_{3} = \langle (\delta N)^{3} \rangle$$

$$C_{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2}$$

$$\frac{C_{2}}{C_{1}} = \frac{\sigma^{2}}{M}, \quad \frac{C_{3}}{C_{2}} = S\sigma$$

$$\frac{C_{4}}{C_{2}} = \kappa \sigma^{2}$$

$$\begin{pmatrix} C_{4} \\ C_{2} \\ C_{2} \\ C_{1} \\ C_{2} \\ C_{2} \\ C_{2} \\ C_{2} \\ C_{1} \\ C_{2} \\ C_{2} \\ C_{1} \\ C_{2} \\ C_{2} \\ C_{2} \\ C_{1} \\ C_{2} \\ C_{2} \\ C_{1} \\ C_{2} \\ C_{2} \\ C_{2} \\ C_{2} \\ C_{1} \\ C_{2} \\ C_{2} \\ C_{2} \\ C_{1} \\ C_{2} \\ C_{2$$

Kurtosis

-10.0 -7.5 -5.0

Kσ

-25 0.0 2.5 5.0 7.5 10.0

 $\kappa \sigma^2 = 1$ (Poisson Fluctuations)

 $\kappa > 0$ $\kappa < 0$

baseline

 \sqrt{s}

1.Sensitive to correlation length ξ

Near CP $\rightarrow \xi \uparrow$ $C_3 = \langle (\delta N)^3 \rangle \sim \xi^{4.5}$ $C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle \sim \xi^7$

2.Related to susceptibility

$$\begin{aligned} \frac{\chi_4^q}{\chi_2^q} &= \kappa \sigma^2 = \frac{C_4^q}{C_2^q}, \quad \frac{\chi_3^q}{\chi_2^q} = S\sigma = \frac{C_3^q}{C_2^q} \\ \chi_n^q &= \frac{1}{VT^3} \cdot C_n^q = \frac{\partial^n (p/T^4)}{\partial (\mu^q)^n}, \quad q = B, Q, S \end{aligned}$$

3. Non-monotonic energy dependence of $\kappa \sigma^2$ (C₄/C₂) \rightarrow existence of a critical point

M. A. Stephanov, PRL 102, 032301 (09); M. Asakawa, S. Ejiri and M. Kitazawa, PRL 103, 262301 (09) S.Ejiri et al, PLB 633, 275(06); M. A. Stephanov, PRL 107, 052301 (11); F. Karsch and K. Redlich, PLB 695, 136 (11)

Measurements from STAR

baseline below 39 GeV.

Dec.8, 2024

Net-proton Cumulants from STAR BES-I

STAR BES-I Program: Au+Au collisions

HADES, PRC 102(2020) 024914 STAR, PRL 126 (2021) 092301

√ s_{NN} (GeV)	Events / 10 ⁶	μ _B (Mev)
200	220	25
62.4	43	75
54.4	550	85
39	92	112
27	31	156
19.6	14	206
14.5	14	264
11.5	7	315
7.7	3	420
3.0	140	750

Full measurement on BES-I datasets

- > With TOF detector, p_T coverage is extended to 2.0 GeV/c
- Non-monotonic energy dependence trend is observed with 3.1σ significance

Net-proton Cumulants from STAR BES-II

Part 2: A Multi-Phase Transport Model

♦ A Multi-Phase Transport Model (AMPT)

♦ A Multi-Phase Transport Model (AMPT)

◆ A Multi-Phase Transport Model (AMPT)

> In the old version, only K⁺ and K⁻ were introduced in hadron rescatterings as explicit particles, but K⁰ and \overline{K}^0 were omitted.

In the old version, some isospin-averaged cross sections were used, and the charge of the final state particles is chosen randomly from all possible charges, independent of the total charge of the initial state.

For example: 1)
$$\pi^+ + \pi^+ \to \rho^+ + \rho^+ \checkmark$$

2) $\pi^+ + \pi^+ \to \rho^+ + \rho^- \times$
3) $\pi^+ + \pi^+ \to \rho^- + \rho^- \times$

Part 3: Results

Correlation Functions: Cumulants: $C_1 = \kappa_1,$ $\kappa_1 = C_1 = \langle N \rangle,$ **Only for one particle!** ! ! $\kappa_2 = -C_1 + C_2$, $C_2 = \kappa_2 + \kappa_1,$ $\kappa_3 = 2C_1 - 3C_2 + C_3,$ $C_3 = \kappa_3 + 3\kappa_2 + \kappa_1,$ $\kappa_A = -6C_1 + 11C_2 - 6C_3 + C_4.$ $C_4 = \kappa_4 + 6\kappa_3 + 7\kappa_2 + \kappa_1.$ **Factorial moments:** $F_3=\int dy_1 dy_2 dy_3
ho_3(y_1,y_2,y_3)=F_1^3+3F_1C_2+C_3
onumber
ho_3(y_1,y_2,y_3)=
ho_1(y_1)
ho_1(y_2)
ho_1(y_3)+
ho_1(y_1)C_2(y_2,y_3)$ $+
ho_1(y_2)C_2(y_1,y_3)+
ho_1(y_3)C_2(y_1,y_2)$ $+C_3(y_1,y_2,y_3)$ Bzdak, Adam et al. Phys.Rev. C95 (2017)5,054906.

• The cumulants C_n for protons, antiprotons, and net-protons all show a similar increasing dependence on $\langle N_{part} \rangle$

 In the 0-5% and 5-10% centrality ranges, the fourth-order cumulant (C₄) in AMPT notably underestimates STAR's results

Qian Chen, Guo-Liang Ma, Phys.Rev.C 106 (2022) 014907

Qian Chen, Guo-Liang Ma, Phys.Rev.C 106 (2022) 014907

Expectation of baryon number conservation:

n-baryon correlations: $K_1 = \langle N \rangle = pB$ $\kappa_2 = -\frac{\langle N \rangle^2}{R}$ $\kappa_3 = 2 \frac{\langle N \rangle^3}{R^2}$ $\kappa_4 = -6 \frac{\langle N \rangle^4}{B^3}$

Multi-baryon correlations are getting weaker with stage evolution of heavy-ion collisions

an effective acceptance factor q:

representing the proton fraction of baryons within

limited acceptance and efficiency

 $q = \sqrt[n]{\kappa_n^p / \kappa_n^B}$

the acceptance factor is almost independent of centrality and is about 0.475 by a constant fitting, which is slightly different from 1/2

[1]M. Kitazawa and M. Asakawa, Phys. Rev. C 86, 024904 (2012);
[2]M. Kitazawa and M. Asakawa, Phys. Rev. C 85, 021901(R)(2012).

Fluctuations of Net-Kaon

$$Cumulants:
C_2 = \langle N \rangle + \langle \overline{N} \rangle + \kappa_2^{(2,0)} + \kappa_2^{(0,2)} - 2\kappa_2^{(1,1)}
C_3 = \langle N \rangle - \langle \overline{N} \rangle + 3\kappa_2^{(2,0)} - 3\kappa_2^{(0,2)} + \kappa_3^{(3,0)} - \kappa_3^{(0,3)} - 3\kappa_3^{(2,1)} + 3\kappa_3^{(1,2)}
C_4 = \langle N \rangle + \langle \overline{N} \rangle + 7\kappa_2^{(2,0)} + 7\kappa_2^{(0,2)} - 2\kappa_2^{(1,1)} + 6\kappa_3^{(3,0)} + 6\kappa_3^{(0,3)} - 6\kappa_3^{(2,1)}
- 6\kappa_3^{(1,2)} + \kappa_4^{(4,0)} + \kappa_4^{(0,4)} - 4\kappa_4^{(3,1)} - 4\kappa_4^{(1,3)} + 6\kappa_4^{(2,2)}$$
Botak:
Factorial moments:

$$F_{i,k} = \left\langle \frac{N!}{(N-i)!} \frac{\overline{N}!}{(\overline{N}-k)!} \right\rangle = \frac{d^i}{dz^i} \frac{d^k}{d\overline{z}^k} H(z,\overline{z})|_{z=\overline{z}=1}$$
Correlation Functions:

$$\kappa_2^{(2,0)} = -F_{1,0}^2 + F_{2,0},$$

$$\kappa_2^{(1,1)} = -F_{1,0}F_{0,1} + F_{1,1},$$

Fluctuations of Net-Kaon

Qian Chen, Han-Sheng Wang, Guo-Liang Ma, Phys.Rev.C 107 (2023) 034910

The C₂ for AMPT is slightly lower than **Poisson baseline** based on its mean multiplicity, suggesting a correlation between K^+ and K^-

-Poisson

20

10

10

10

10

10

646.3/29

0 ±1.4

0 ±1.4

 11.76 ± 0.00

-7.196e+05 ±4.989e+00

0-5%

Fluctuations of Net-Kaon

Functional Renormalization Group

Incorporating FRG Into AMPT Model

Qian Chen, Rui Wen, Shi Yin, Wei-jie Fu, Zi-Wei Lin, and Guo-Liang Ma. arXiv:2402.12823.

Incorporating FRG Into AMPT Model

- The process of hadronic rescatterings exerts a Poissonization effect on fluctuations.
- The effect of hadronic rescatterings is more significant for critical fluctuations than dynamical fluctuations.

Qian Chen, Rui Wen, Shi Yin, Wei-jie Fu, Zi-Wei Lin, and Guo-Liang Ma. arXiv:2402.12823.

Part 4: Summary and Outlook

Summary and Outlook

Summary

- The AMPT results are consistent with the expectation from baryon number conservation.
- By analyzing the cumulants and correlation functions of net-strangeness and net-kaon, we found that they originate from pair production.
- The incorporation of the FRG into the AMPT model reveals that the hadronic rescatterings process affects different orders of net-baryon cumulant ratios.

Outlook

- ◆ Incorporation of critical fluctuation physics into AMPT : FRG, density fluctuations.
- ◆ nuclear thickness effects, coalescence mechanisms, different collision systems, ...
- Using the extended AMPT model to the analysis of other energy provides a baseline for experimental study.

THANK YOU FOR YOUR Altention

Back Up

Events used for net-proton cumulants measurements

	√s _{NN} (GeV)	μ _Β (GeV)	BES-I Evts (10 ⁶)	BES-II Evts (10 ⁶)	
1	27.0	156	30	220	
2	19.6	206	15	270	
3	17.3	230	-	116	
4	14.6	262	20	178	
5	11.5	316	7	110	
6	9.2	372	-	78	
7	7.7	420	3	45	
• ~ a	factor of 10-18 in	crease in statistic	s		
two new energy points: 9.2, 17.3 GeV From CPOD2024, SQM2024					

Back Up

The fluctuations of strangeness are notably influenced during the weak decay evolution stage

b the two-particle correlation function between the s̄ quark and s quark [κ₂^(1,1)]is dominants

Back Up

- > The strengths of the correlation functions κ_2 and κ_3 in the AMPT model without the FRG sampling are smaller than those in the AMPT model with the FRG sampling.
- > The correlation functions κ_4 from negative to positive, which would be more consistent with the current experimental measurement.

Qian Chen, Rui Wen, Shi Yin, Wei-jie Fu, Zi-Wei Lin, and Guo-Liang Ma. arXiv:2402.12823.