

Nuclear Structure Effect in Light-Ion Collisions

Xinli Zhao (赵新丽) University of Shanghai for Science and Technology

12/08/2024, USTC, Hefei

In Collaboration with: Guoliang Ma (马国亮), You Zhou (周铀), Ziwei Lin (林子威)

ARTICLE

Studies of pear-shaped nuclei using
accelerated radioactive beams

L. P. Gaffney¹, P. A. Butke¹, M. Schock¹², A. B. Hayes¹, E. Wenambe⁴, M. Alben⁵, B. Bastin⁴, C. Buser², A. Blashev², S. Bong², A. Bastine³, S. Bong², A. Bastine³, S. Bong², D. Gaffall, T. Chris

6si:10.1838/nature12073

ARTICLE

Studies of pear-shaped nuclei using accelerated radioactive beams

L. P. Gaffney¹, P. A. Butkel, M. Schock¹², A. B. Hayes¹, E. Wennuder⁴, M. Alben⁵, B. Bastin³, G. Busar², A. Bastinev², S. Boung¹, M. Hayes², Colorkin³², A. Hayes², D. Gaffall, T. Christop², D. Ga

6xi:10.1838/nature12071

Article

Imaging shapes of atomic nuclei in high-energy nuclear collisions

C.J. Zhang, J.Y. Jia, et al., Nature 635, 67 (2024)

https://doi.org/10.1038/s41586-024-08097-2 STAR Collaboration*

$$
\rho(r,\theta,\phi)=\frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}}
$$

 $R(\theta, \phi) = R_0(1 + \beta_2[\cos \gamma Y_{2,0}(\theta, \phi) + \sin \gamma Y_{2,2}(\theta, \phi)] + \beta_3 Y_{3,0}(\theta, \phi) + \beta_4 Y_{4,0}(\theta, \phi))$

 \triangleright The study of nuclear structure in high-energy heavy ion collisions uniquely reveals how nuclear properties affect collision dynamics and QGP formation. **The CONSIST CONSISTENT CONSISTENT CON**

ARTICLE

Studies of pear-shaped nuclei using accelerated radioactive beams

L. P. Gaffrayl, P. A. Butkel, M. Schock 1A , A. B. Hayes
 1 , E. Wenneder", M. Albers", B. Besitz", C. Butke
er", S. Besitz, J. Gelmider, M. Hayes, J. Gelmider, M. Hayes, J. C. Gelmider, M. Hayes, J. C. Gelmider

6610.1838/variate1207

Article

Imaging shapes of atomic nuclei in high-energy nuclear collisions

C.J. Zhang, J.Y. Jia, et al., Nature 635, 67 (2024)

https://doi.org/10.1038/s41586-024-08097-2 STAR Collaboratior

Cluster Structures

Cluster Structures

 \triangleright Clusters play an extremely important role at all levels of matter.

20

 \triangleright Understanding and describing cluster structure are an important scientific problem.

30

Cluster Structures

 \triangleright Clusters play an extremely important role at all levels of matter.

➢ Understanding and describing cluster structure are an important scientific problem.

J.P. Ebran et al. Nature487, 341(2012)

8

Collective Flow & Nuclear Structure

 \triangleright Image the shape and radial profile of nuclei using the hydrodynamic response.

Motivation of Transport Models for Small Systems

- \triangleright Near side ridges are indication of collectivity in small systems.
- 1) Are they real signals from collectivity?
- 2) Is a parton matter formed in small systems?
- 3) Is the matter far off equilibrium or close to equilibrium?

Large systems Small systems

Motivation of Transport Models for Small Systems

Large systems Small systems Pb+Pb $U+U$ Au+Au Xe+Xe p+A d+A He+A … $O+O$ Ne+Ne Ca+Ca …

- \triangleright Near side ridges are indication of collectivity in small systems.
- 1) Are they real signals from collectivity?
- 2) Is a parton matter formed in small systems?
- 3) Is the matter far off equilibrium or close to equilibrium?

➢ **For large systems**

- \checkmark Transport models are similar to hydrodynamics and work very well.
- ➢ **2) For finite/small systems**
- \checkmark Non-equilibrium effects are expected to be important.
- \checkmark *e.g.* Parton escape mechanism: interactioninduced response from kinetic theory to the anisotropic spatial geometry.
- \triangleright To study the properties of parton matter in small systems, transport models are crucial as they address non-equilibrium dynamics. 11

 \triangleright A transport model for non-equilibrium.

➢ AMPT is designed to be a self-contained kinetic description of nuclear collisions.

 \triangleright A transport model for non-equilibrium.

- ➢ AMPT is designed to be a self-contained kinetic description of nuclear collisions.
- \triangleright Evolves the system from initial state to final observables.
- ➢ Automatically includes 3D productions of all flavours & conserved charges.
- \triangleright Automatically includes non-equilibrium initial state & dynamics/evolution.

A Test-bed for New Ideas in AMPT

2. Flow in small systems

3.Non-equilibrium parton escape

4. Longitudinal decorrelations 5. Effects of nuclear structure

PRL 125, 222301 (2020) (Ru+Ru & Zr+Zr collisions) PRC 103, 064906 (2021) (p+O/O+O collisions) 16

1. Modern nPDFs & spatially-dependent nuclear shadowing

 \checkmark Modern nPDFs are important for pQCD observables such as heavy flavor & high p_T :

$$
\frac{d\sigma^{Q\bar{Q}}}{dp_1^2 dy_1 dy_2} = K \sum_{a,b} x_1 f_a(x_1,\mu_F^2) x_2 f_b(x_2,\mu_F^2) \frac{d\sigma^{ab \to Q\bar{Q}}}{d\hat{t}}
$$

nPDFs for the free nucleon EPS09s nuclear shadowing D-O CJ15 CTEQ6.1M $x f(x)$ 10^{-1} 10^{2}

➢ AMPT can reasonably describe central A+A data.

Z.W. Lin, et al., NUCL SCI TECH (2021) 32:113 Z.W. Lin, PRC 99 (2019); PRC 101 (2020)

1. Modern nPDFs & spatially-dependent nuclear shadowing

 \checkmark Modern nPDFs are important for pQCD observables such as heavy flavor & high p_T :

$$
\frac{d\sigma^{Q\bar Q}}{dp_1^2dy_1dy_2}\!\!=\!\!K\!\!\sum_{a,b}\!\!x_1f_a(x_1,\!\mu_F^2)x_2f_b(x_2,\!\mu_F^2)\!\!\frac{d\sigma^{ab\to Q\bar Q}}{d\hat t}
$$

nPDFs for the free nucleon EPS09s nuclear shadowing

➢ AMPT can reasonably describe central A+A data.

2. Heavy flavor

Z.W. Lin, et al., NUCL SCI TECH (2021) 32:113 Z.W. Lin, PRC 99 (2019); PRC 101 (2020)

 $gg \rightarrow gg$ cross section in pQCD is divergent for massless *g*, so HIJING uses a minijet cutoff p_0 :

$$
\frac{d\sigma}{dt} \sim \frac{9\pi\alpha_s^2}{2t^2}
$$

But due to heavy quark mass, heavy flavor production has a finite cross section and does not need a cutoff

 $q + q \rightarrow Q + \overline{Q}$, $q + \overline{q} \rightarrow Q + \overline{Q}$, ...

- \checkmark remove p_0
- \checkmark include heavy ion in σ_{jet} : $\sigma_{jet} = \sigma_{jet}^{LF} + \sigma^{HF}$
-

 \triangleright To propose the Cronin effect as a possible solution to the $D_0 R_{\text{pA}}/v_2$ puzzle. 18

3. Local nuclear scaling C Zhang, Z.W. Lin, et al., PRC 104 (2021)

 \checkmark Propose a more general scaling by using local nuclear densities:

 $b_L(s_A, s_B, s) = \frac{b_L^{pp}}{[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\beta(s)}}$

 $p_0(s_A, s_B, s) = p_0^{pp}(s) [\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\alpha(s)}$

 \checkmark Fit charged hadrons in pp to determine $b_L^{pp} = 0.7$, then use central Au+Au/Pb+Pb data to fit $\alpha(s)$, $\beta(s)$.

 \triangleright Self-consistently describe the system size dependence.

3. Local nuclear scaling

C Zhang, Z.W. Lin, et al., PRC 104 (2021)

 \checkmark Propose a more general scaling by using local nuclear densities:

 $b_L(s_A, s_B, s) = \frac{b_L^{c_L}}{[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\beta(s)}}$

 $p_0(s_A, s_B, s) = p_0^{pp}(s) [\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\alpha(s)}$

 \checkmark Fit charged hadrons in pp to determine $b_L^{pp} = 0.7$, then use central Au+Au/Pb+Pb data to fit $\alpha(s)$, $\beta(s)$.

 \triangleright Self-consistently describe the system size dependence.

4. Include subnucleon structure of proton

 \checkmark Proton substructure $\rho(r) = \frac{1}{8\pi R^3} e^{-r/R}$

 \checkmark Constituent quark method

Glauber modeling with 3 quark participants Collision criteria $d < \sqrt{\sigma_{cc}/\pi}$

 \triangleright 3-quark AMPT gives similar results as data.

3. Local nuclear scaling

C Zhang, Z.W. Lin, et al., PRC 104 (2021)

 \checkmark Propose a more general scaling by using local nuclear densities:

 $b_L(s_A, s_B, s) = \frac{b_L^{c_L}}{[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\beta(s)}}$

 $p_0(s_A, s_B, s) = p_0^{pp}(s) [\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\alpha(s)}$

 \checkmark Fit charged hadrons in pp to determine $b_L^{pp} = 0.7$, then use central Au+Au/Pb+Pb data to fit $\alpha(s)$, $\beta(s)$.

 \triangleright Self-consistently describe the system size dependence.

4. Include subnucleon structure of proton

 \checkmark Proton substructure $\rho(r) = \frac{1}{8\pi R^3} e^{-r/R}$

 \checkmark Constituent quark method

Glauber modeling with 3 quark participants Collision criteria $d < \sqrt{\sigma_{cc}/\pi}$

 \triangleright 3-quark AMPT gives similar results as data.

5. Improvement of quark coalescence 6. Implementation of electric charge conservation 7. … 21

Nuclear Structure for ¹⁶O in AMPT

Nuclear Structure for ¹⁶O in AMPT

τ_0 Effect on v_2 for ¹⁶O+¹⁶O in Improved AMPT

- \triangleright $\langle p_T \rangle$ is reasonable in improved AMPT.
- \triangleright The parton cross section dependence of v_2 is significant.

τ_0 Effect on v_2 for ¹⁶O+¹⁶O in Improved AMPT

The formation time for each parton: $\tau'_0 = const \cdot E/m_T^2$, $\tau_0 = E/m_T^2$

v_2 & v_3 Results for ¹⁶O+¹⁶O in Improved AMPT

- $\triangleright v_2(p_T)$ results are close to data at low p_T .
- \triangleright $v_3(p_T)$ results are close to data.

v_2 & v_3 Results for ¹⁶O+¹⁶O in Improved AMPT

- $\triangleright \nu_2(p_T)$ results are close to data at low p_T .
- \triangleright $v_3(p_T)$ results are close to data.
- \triangleright The effect of cluster structure is significant for v_2 .
- \triangleright The v_3 results are higher than data.

$\mathcal{E}_2\{4\}/\mathcal{E}_2\{2\}$ & $v_2\{4\}/v_2\{2\}$ Results for ¹⁶O+¹⁶O in Improved AMPT

X.L. Zhao, Y. Zhou, et al., arXiv: 2404.09780

 $\varepsilon_2\{2\}^2 = \langle \varepsilon_2^2 \rangle = \langle \varepsilon_2 \rangle^2 + \sigma_{\varepsilon_2}^2$ $\varepsilon_2\{4\}^2\;=\;(-\left<\varepsilon_2^4\right>+2\left<\varepsilon_2^2\right>^2)^{1/2}\approx \left<\varepsilon_2\right>^2-\sigma_{\varepsilon_2}^2$

- \triangleright ε_2 {4}/ ε_2 {2} & v_2 {4}/ v_2 {2} results are consistent.
- \triangleright Compared to the STAR on the v_2 {4}/ v_2 {2} ratio, the tetrahedron and *ab initio* cases give better descriptions of the STAR data.

$E_2\{4\}/E_2\{2\}$ & $v_2\{4\}/v_2\{2\}$ Results for ¹⁶O+¹⁶O in Improved AMPT

X.L. Zhao, Y. Zhou, et al., arXiv: 2404.09780

 $\varepsilon_2\{2\}^2 = \langle \varepsilon_2^2 \rangle = \langle \varepsilon_2 \rangle^2 + \sigma_{\varepsilon_2}^2$ $\varepsilon_2\{4\}^2 = (-\langle \varepsilon_2^4 \rangle + 2 \langle \varepsilon_2^2 \rangle^2)^{1/2} \approx \langle \varepsilon_2 \rangle^2 - \sigma_{\varepsilon_2}^2$

- \triangleright ε_2 {4}/ ε_2 {2} & v_2 {4}/ v_2 {2} results are consistent.
- \triangleright Compared to the STAR on the v_2 {4}/ v_2 {2} ratio, the tetrahedron and *ab initio* cases give better descriptions of the STAR data.

$$
\frac{dN^{\text{pairs}}}{d\Delta\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos(n\Delta\phi)
$$

$$
Y(\Delta\phi, p_T^{\text{trig}}) = c_0(1 + 2\sum_{n=1}^{n=4} c_n \cos(n\Delta\phi))
$$

$$
c_n^{\text{sub}} = c_n - c_n^{\text{non-flow}} = c_n^{\text{cent}} - c_n^{\text{peri}} \times f
$$

Nuclear Structure for ¹⁶O & ²⁰Ne in AMPT

v_2 & v_3 Results for ¹⁶O+¹⁶O & ²⁰Ne+²⁰Ne in Improved AMPT

G. Giacalone, B. Bally, G. Nijs, D. Lee, B.N. Lu, W. van der Schee,, et al. arXiv: 2402.05995

- \triangleright Using the same initial nucleon distributions, AMPT has the different results with hydro.
- \triangleright Some improvements are needed.

v_2 & v_3 Results for ¹⁶O+¹⁶O & ²⁰Ne+²⁰Ne in Improved AMPT

G. Giacalone, B. Bally, G. Nijs, D. Lee, B.N. Lu, W. van der Schee,, et al. arXiv: 2402.05995

- \triangleright Using the same initial nucleon distributions, AMPT has the different results with hydro.
- \triangleright Some improvements are needed.

Problems for ¹⁶O+ ¹⁶O / ²⁰Ne+ ²⁰Ne in Improved AMPT

➢ **Same inputs**: initial nucleon distributions are consistent with hydro.

 \triangleright **Different** ε_2 : the initial condition is different from hydro.

To keep the same ε_2 , 1) $\tau_0' = \tau_0$ for partons.

2) change the reduced thickness in AMPT.

reduced thickness

$$
f = T_R(p; T_A, T_B) \equiv \left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}
$$

$$
T_R = \begin{cases} \max(T_A, T_B), & p \to +\infty \\ (T_A + T_B)/2, & p = +1 \text{ (arithmetic)} \\ \sqrt{T_A T_B}, & p = 0 \text{ (geometric)} \\ 2T_A T_B/(T_A + T_B), & p = -1 \text{ (harmonic)} \\ \min(T_A, T_B), & p \to -\infty. \end{cases}
$$

Problems for ¹⁶O+ ¹⁶O / ²⁰Ne+ ²⁰Ne in Improved AMPT

Problems for ¹⁶O+ ¹⁶O / ²⁰Ne+ ²⁰Ne in Improved AMPT

 \triangleright For Au+Au collisions in public and improved AMPT, the hadronic effect of v_2 are almost zero.

 \triangleright For O+O collisions in improved AMPT, the hadronic effect of v_2 is not zero.

➢ **Hadronic effects of are different in O+O & Au+Au collisions.**

 \triangleright A simple method to solve this problem is the additional formation time for hadrons.

Summary & Outlook

- \triangleright Improved AMPT roughly reproduce the STAR data for O+O collisions.
- \triangleright Different nuclear structures have obviously effect on v_2 & v_3 in AMPT.
- ➢ The studies of O+O & Ne+Ne collisions help explore the limit of QGP collectivity.
- ➢ Studying the same collision system with AMPT and hydro helps us to understand the properties of the QGP in small system collisions. But, it is necessary to ensure that the same initial conditions are available.
- \triangleright AMPT is especially suitable for studies of non-equilibrium dynamics
- Recent developments have made the model more versatile and accurate.

Summary & Outlook

- \triangleright Improved AMPT roughly reproduce the STAR data for O+O collisions.
- \triangleright Different nuclear structures have obviously effect on v_2 & v_3 in AMPT.
- ➢ The studies of O+O & Ne+Ne collisions help explore the limit of QGP collectivity.
- ➢ Studying the same collision system with AMPT and hydro helps us to understand the properties of the QGP in small system collisions. But, it is necessary to ensure that the same initial conditions are available.
- \triangleright AMPT is especially suitable for studies of non-equilibrium dynamics
- Recent developments have made the model more versatile and accurate.

Thank you for your attention! ³⁷

String Melting Version of A Multi-Phase Transport Model (AMPT)

 \triangleright A transport model for non-equilibrium.

- ➢ AMPT is designed to be a self-contained kinetic description of nuclear collisions.
- \triangleright Evolves the system from initial state to final observables.
- ➢ Automatically includes 3D productions of all flavours & conserved charges.
- \triangleright Automatically includes non-equilibrium initial state & dynamics/evolution.

Additional Formation Time for Hadrons in Improved AMPT

 \triangleright An additional formation time for hadrons can solve the hadronic effects for O+O collisions.