

系列学术报告

CP violation at electroweak scale and beyond

Search for Hyperon CPV at BESIII and STCF

Xiaorong Zhou University of Science and technology of China

26/8/2023, USTC, Hefei

Direct CPV effect in strange-quark sector

• Direct CP-violation effects in kaon and hyperon decays in the SM are given by QCD and EW penguin operators.

- To generate a CP asymmetry, one needs two different amplitudes that contribute coherently.
- Direct CPV in $K_L \rightarrow \pi^+ \pi^-$ arise from $\Delta I = 1/2$ and $\Delta I = 3/2$ amplitudes interference in S-wave decay.
- Direct CPV in $Y' \rightarrow Y\pi$ arise from S wave and P wave amplitudes interference.

Study of CPV in hyperon decay is a complementary approach in two-body non-leptonic $\Delta S = 1$ transitions

Direct CPV effect in strange-quark sector

• For decay
$$A = A_1 e^{i\delta_s^1} e^{i\phi_w^1} + A_2 e^{i\delta_s^2} e^{i\phi_w^2}$$

 δ_s strong phase ϕ_w weak phase

$$\overline{A} = A_1 e^{i\delta_s^1} e^{-i\phi_w^1} + A_2 e^{i\delta_s^2} e^{-i\phi_w^2}$$

Make
$$r = A_2/A_1$$
, $\delta = \delta_s^2 - \delta_s^1$, $\phi = \phi_w^2 - \phi_w^1$

Thus
$$A_{CP} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} = \frac{|A_1|^2 |1 + re^{i(\delta + \phi)}|^2 - |A_1|^2 |1 + re^{i(\delta - \phi)}|^2}{|A_1|^2 |1 + re^{i(\delta + \phi)}|^2 + |A_1|^2 |1 + re^{i(\delta - \phi)}|^2}$$

$$= \frac{2r\cos(\delta + \phi) - 2r\cos(\delta - \phi)}{2(1 + r^2 + r\cos(\delta + \phi) + r\cos(\delta - \phi))} = \frac{2r\sin\delta\sin\phi}{1 + r^2 + 2r\cos\delta\cos\phi}$$

 \neq 0, if $\delta \neq$ 0 and $\phi \neq$ 0

Hyperon non-leptonic decays

• Effective Lagranian of the decay:

 $\mathcal{L} = \frac{eG_F}{2}\overline{B}_f(\mathbf{P} + \mathbf{S}\gamma_5)\sigma^{\mu\nu}B_iF_{\mu\nu}$

• Observables:

$$\Gamma = \frac{e^2 G_F^2}{\pi} (|S|^2 + |P|^2)$$

$$\begin{split} S &= \Sigma^{i} S_{i} e^{i(\phi_{i}^{S} + \delta_{i}^{S})} \\ P &= \Sigma^{i} P_{i} e^{i(\phi_{i}^{P} + \delta_{i}^{P})} \end{split}$$

Phys. Rev. 108, 1645 (1957)

Construction of CP-odd observables

$$\alpha_Y = \frac{2 \operatorname{Re} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \beta_Y = \frac{2 \operatorname{Im} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

• Anisotropic proton decay distribution

$$\frac{dN}{d\cos\theta} = \frac{N_0}{2} (1 + \alpha_\Lambda P_\Lambda \cos\theta)$$

slope =
$$\alpha_{\Lambda} P_{\Lambda}$$

$$\frac{dN}{l\cos\theta} \int_{-1}^{-1} \int_{0}^{0} \int_{1}^{1}$$

CPV observables and SM prediction

John F. Donoghue Xiao-Gang He Sandip Pakvasa

PHYSICAL REVIEW D

VOLUME 34, NUMBER 3

1 AUGUST 1986

Hyperon decays and CP nonconservation

John F. Donoghue Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the *CP*-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and leftright-symmetric models of *CP* nonconservation.

Not sensitive to CPV

Polarization of decayed baryon needs to be measured

Decay width difference

Decay parameter difference

Decay parameter difference

$$\Delta = \frac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}} \approx \sqrt{2} \frac{T_{\frac{3}{2}}}{T_{\frac{1}{2}}} \sin \Delta_s \sin \phi_{CP}$$
$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \approx \tan \Delta_s \tan \phi_{CP}$$
$$B = \frac{\Gamma \beta + \overline{\Gamma} \overline{\beta}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \approx \tan \phi_{CP}$$

 -5.4×10^{-7} -0.5 × 10⁻⁴

 3.0×10^{-3}

 Ξ^-, Ξ^0, Ω^- cascade decay

BSM Theories Allow for Larger Asymmetries

- Tandean (2004) shows that the upper bound on $A_{\Xi} + A_{\Lambda}$ from ϵ'/ϵ and ϵ measurements is O(10⁻²)
- Some SUSY models which do not generate ϵ'/ϵ can lead to A_{Λ} of $O(10^{-3})$
- The BSM contribution can be higher than SM one by about an order of magnitude

Be careful of

 $\Delta I = 1/2$ rule

Experimental Review

$A_{\Lambda} = \frac{\alpha_{\Lambda} + \overline{\alpha}_{\Lambda}}{\alpha_{\Lambda} - \overline{\alpha}_{\Lambda}} \text{ or } A_{\Lambda} = \frac{\alpha_{\Lambda} + \overline{\alpha}_{\Lambda}}{\alpha_{\Lambda} - \overline{\alpha}_{\Lambda}}$					
Experiment	Method	A_{Λ}	Remark		
R608 at ISR (1985)	$pp ightarrow \Lambda X$, $par{p} ightarrow \overline{\Lambda} X$	-0.02 ± 0.14	Assume $P_{\Lambda} = P_{\overline{\Lambda}}$		
DM2 at Orsay (1988)	$e^+e^- ightarrow J/\psi ightarrow \Lambda\overline{\Lambda}$	0.01 ± 0.10	1077 events		
PS185 at LEAR (1989)	$ar{p}p o \overline{\Lambda} \Lambda$	-0.023 ± 0.057	16,000 events		
BESII at BEPC (2010)	$e^+e^- ightarrow J/\psi ightarrow \Lambda\overline{\Lambda}$	$-0.081 \pm 0.055 \pm 0.059$	9000 events		
$A_{\Xi\Lambda} = \frac{\alpha_{\Xi}\alpha_{\Lambda} - \overline{\alpha}_{\Xi}\overline{\alpha}_{\Lambda}}{\alpha_{\Xi}\alpha_{\Lambda} + \overline{\alpha}_{\Xi}\overline{\alpha}_{\Lambda}} \approx A_{\Lambda} + A_{\Xi}$					
Experiment	Method	$A_{\Xi\Lambda}$	Remark		
E756 at Fermilab (2000)	$\Xi \to \Lambda \pi \to p \pi \pi$	0.012 ± 0.014	210k Ξ^- and 70k $\overline{\Xi}^+$		
HyperCP at Fermilab (2004)	$\Xi \to \Lambda \pi \to p \pi \pi$	$(0.0 \pm 6.7) \times 10^{-4}$	117M Ξ^- and 41M $\overline{\Xi}^+$		
HyperCP at Fermilab (2008, preliminary)	$\Xi \to \Lambda \pi \to p \pi \pi$	$(-6.0 \pm 2.9) \times 10^{-4}$	780M Ξ^- and 270M $\overline{\Xi}^+$		

Why Hyperon Physics at BESIII?

10 billion J/ψ events collected

- > Large BRs in J/ψ decays \rightarrow tens millions hyperons
- > Transversely polarization due to none zero phase of two helicity amplitudes

 $\Delta \Phi$ = complex phase between $A_{\frac{1}{2} \frac{1}{2}}$ and $A_{\frac{1}{2} - \frac{1}{2}}$

Why Hyperon Physics at BESIII?

$B\overline{B}$ mode	$\mathcal{B}(imes 10^{-3})$	$lpha_{oldsymbol{\psi}}$	$\Delta \Phi$	$P_y^{\max}/\cos\theta^{\max}$
$J/\psi ightarrow \Lambda\overline{\Lambda}$	1.89 ± 0.09	0.475 ± 0.003	0.752 ± 0.008	25% / 0.64
$J/\psi \to \Sigma^+ \overline{\Sigma}^-$	1.07 ± 0.04	-0.508 ± 0.007	-0.27 ± 0.02	16% / 0.82
$J/\psi ightarrow \Sigma^0 \overline{\Sigma}{}^0$	1.17 ± 0.03	-0.45 ± 0.02	0.09 ± 0.02	5% / 0.80
$J/\psi ightarrow \Sigma^- \overline{\Sigma}^{+*}$	1.51 ± 0.01	-0.37 ± 0.02	0.006 ± 0.005	0.5% / 0.78
$J/\psi ightarrow \Xi^0 \overline{\Xi}{}^0$	1.17 ± 0.04	0.66 ± 0.06	1.16 ± 0.02	27% / 0.61
$J/\psi ightarrow \Xi^- \overline{\Xi}^+$	0.97 ± 0.08	0.59 ± 0.02	1.21 ± 0.05	30% / 0.62

*not yet published results

Advantages at e^+e^- Machine

- Known initial 4-momentum
- Strongly boosted: $\beta \approx 0.7$
- Substantial polarization: maximum 30%
- Decay with neutron & π^0 : uncertainty limited within 1%
- Decay with invisibles: missing particles

Both hyperons can be reconstructed, and the systematic uncertainties are under control.

Compare of e^+e^- **and Fix-target Experiments**

Hyperons at BESIII: less statistics compare with large flux hyperon beam with polarization, but with better precision, charge-conjugate channels 11

$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}, \Lambda(\overline{\Lambda}) \rightarrow p\pi$

• Matrix element of
$$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$$
:

$$\mathcal{M} = F_1 \gamma_\mu + \frac{F_2}{2m} q_\nu \sigma^{\nu\mu} \gamma_5 + i \epsilon^{\mu\nu\alpha\beta} \frac{\sigma_{\alpha\beta}}{4m} q_\nu F_3 + \frac{1}{2m} \left(q^\mu - \frac{q^2}{2m} \gamma^\mu \right) \gamma_5 F_4$$

- Differential cross section using spin density matrix and decay matrix
- A correlated 5-dim. angular distribution $\xi = (\theta_{\Lambda}, \theta_p, \phi_p, \theta_{\bar{p}}, \phi_{\bar{p}})$ with 4 parameters is constructed

$$\mathcal{W}^{\Lambda\bar{\Lambda}}(\boldsymbol{\xi};\boldsymbol{\omega}) = \sum_{\mu,\nu=0}^{3} C_{\mu\nu} a^{\Lambda}_{\mu0} a^{\bar{\Lambda}}_{\nu0}$$

$$\omega(\xi, \Delta \Phi, \alpha_{\psi}, \alpha_{-}, \alpha_{\gamma}) = 1 + \alpha_{\psi} \cos^2 \theta_{\Lambda} \quad Unpole$$

$$+\alpha_{-}\alpha_{\gamma}[\sin^{2}\theta_{\Lambda}(n_{1,x},n_{2,x}-\alpha_{\psi}n_{1,y},n_{2,y})+(\cos^{2}\theta_{\Lambda}+\alpha_{\psi})n_{1,z},n_{2,z}]$$

$$+ \alpha_{-}\alpha_{\gamma} \sqrt{1 - \alpha_{\psi}^{2} \cos(\Delta \Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda}(n_{1,x}, n_{2,z} + n_{1,z}, n_{2,x})}$$

 $- \alpha_{\psi}^{2} \sin(\Delta \Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} (\alpha_{-} n_{1,y} + \alpha_{\gamma} n_{2,y})$ Polarized part

Polarization of A hyperons and CPV

- Updated results based on 10B J/ψ events: ~0.42M signals
- Decay asymmetries with best precisions ever **CP test** $A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- \alpha_+}$

Par.	This Work*	Previous results **	PDG 2018 ***	a.7 a unward chift from all
$lpha_{J/\psi}$	$0.4748 \pm 0.0022 \pm 0.0024$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027	who upward shift from an
$\Delta \Phi$	$0.7521 \pm 0.0042 \pm 0.0080$	$0.740 \pm 0.010 \pm 0.009$	-	previous measurements
α_{-}	$0.7519 \pm 0.0036 \pm 0.0019$	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013	
$lpha_+$	$-0.7559 \pm 0.0036 \pm 0.0029$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08	O E% lowel consistivity for CDV to st
A_{CP}	$-0.0025 \pm 0.0046 \pm 0.0011$	$0.006 \pm 0.012 \pm 0.007$	-	0.5% level sensitivity for CPV test
$lpha_{\pm,avg.}$	$0.7542 \pm 0.0010 \pm 0.0020$	$0.754 \pm 0.003 \pm 0.002$	-	SM prediction: 10-4~10-5

$$e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+, \Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + c.c.$$

• For the sequential weak decays, the formula of sequential decays is:

PRD99(2019)056008 PRD100(2019)114005

- Angular distribution $d\Gamma \propto W(\xi, \omega)$
 - ξ : 9 kinematic variables, denoted by 9 helicity angles
 - $\omega = (\alpha_{\psi}, \Delta \Phi, \alpha_{\Xi}, \alpha_{\Xi}, \phi_{\Xi}, \phi_{\Xi}, \alpha_{\Lambda}, \alpha_{\overline{\Lambda}})$: 8 free parameters

More parameters in sequential decay!

- Data sample: 1.3 billion J/ψ events.
- Final dataset: $73.2 \cdot 10^3$ events with 199 backgrounds.

$$e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+, \Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + c.c.$$

	Nature (5 <mark>06 (2022) 7912, 64-</mark> 0	7	
	Parameter	This work	Previous result	
	$\overline{a_{\psi}}$	0.586±0.012±0.010	0.58±0.04±0.08	
	ΔΦ	1.213±0.046±0.016 rad	-	First measurement of the Ξ^-
First direct and	a₌	-0.376±0.007±0.003	-0.401±0.010	
simultaneously measurement	ϕ_{Ξ}	$0.011 \pm 0.019 \pm 0.009 rad$	$-0.037 \pm 0.014 rad$	
of the charged E decay	ā	0.371±0.007±0.002	-	
parameters	$ar{oldsymbol{\phi}}_{\scriptscriptstyle \Xi}$	-0.021±0.019±0.007rad	-	
	a	0.757±0.011±0.008	0.750±0.009±0.004	
	\overline{a}_{Λ}	-0.763±0.011±0.007	-0.758±0.010±0.007	
First measurement of weak	$\xi_{P} - \xi_{S}$	(1.2±3.4±0.8)×10 ⁻² rad	-	We obtain the same precision for
phase difference in E decay	$\overline{\delta_{P}}-\delta_{S}$	(-4.0±3.3±1.7)×10 ⁻² rad	(10.2±3.9)×10⁻² rad	ϕ as hyperCF with three orders of magnitude smaller data sample!
	A ^Ξ _{CP}	(6±13±6)×10 ⁻³	-	HyperCP: PRL 93(2004) 011802
Three independent <i>CP</i> tests	$\Delta \phi_{\rm CP}^{\Xi}$	(-5±14±3)×10 ⁻³ rad	-	
	A^A	(-4±12±9)×10 ⁻³	(-6±12±7)×10 ⁻³	
	$\langle \phi_{=} \rangle$	0.016±0.014±0.007rad		1

Polarization behavior in different hyperon pair productions

BESIII Achievement on Hyperon Decay

- Polarization of hyperon disentangled
- Most precise decay parameters obtained
- More CPV observable constructed

 $A_A = -0.0025 \pm 0.0046 \pm 0.0011 \text{ (10billion } J/\psi)$ $A_{\Sigma} = -0.004 \pm 0.037 \pm 0.010 \text{ (1.3 billion } J/\psi)$ $A_{\Xi} = 0.006 \pm 0.013 \pm 0.006 \text{ (1.3 billion } J/\psi)$ $\Delta \phi_{\Xi} = -0.005 \pm 0.014 \pm 0.003 \text{ (1.3 billion } J/\psi)$

• Weak phase determined for the first time

 $\xi_{\Lambda}^{P} - \xi_{\Lambda}^{S} = (-1.1 \pm 2.1)^{\circ} \in \{-4.5^{\circ}, +2.1^{\circ}\} (90\% \text{ C.L.})$

To discovery CPV in hyperon, more new ideas are needed.

Searching for hyperon EDM at BESIII

µ: magnetic dipole momentd: electric dipole moment

Non-zero EDM will violate P and T symmetry: T violation $\leftrightarrow CP$ violation, if CPT holds.

$$\mathcal{M} = F_1 \gamma_\mu + \frac{F_2}{2m} q_\nu \sigma^{\nu\mu} \gamma_5 + i \epsilon^{\mu\nu\alpha\beta} \frac{\sigma_{\alpha\beta}}{4m} q_\nu F_3 + \frac{1}{2m} \left(q^\mu - \frac{q^2}{2m} \gamma^\mu \right) \gamma_5 F_4$$

Systematic measurement of the EDMs of the hyperon family! BESIII is expected to improve the measurement precision of the Λ EDM by a factor of **1000**

Expected samples at STCF and hyperon CPV

Probe CP violation at tau-charm factory

CPV in *A* **decay with polarized electron beam**

- Large statistics and electron polarization will improve the sensitivity of CPV significantly.
- The sensitivity of CPV follows :

$$\sigma_{A_{CP}}\approx \sqrt{\frac{3}{2}}\frac{1}{\alpha_1\sqrt{N_{sig}}\sqrt{\langle P_B^2\rangle}}.$$

$$\xrightarrow{\times 10^9 \text{ AA}, (P_B^2)=0.1} \sigma_{A_{CP}} \sim 1.4 \times 10^{-4}$$

$$\xrightarrow{1\times10^{9}\Lambda\bar{\Lambda}, \ \langle P_{B}^{2}\rangle=0.8} \sigma_{A_{CP}}\sim0.5\times10^{-5}$$

Summary

• CPV in hyperon decay at BESIII

- Complementary to CPV studies with Kaons
- BESIII has already rewritten the PDG book for Λ and Ξ decays
- Results of Σ^{\pm} , Ξ with 10 billion J/ψ will be coming soon
- CPV in hyperon production at BESIII
 - First measurements of Σ^+ , Ξ^- , Ξ^0 , Ω hyperons EDM
 - The sensitivity of the hyperon EDM can be reached at the order of 10^{-19}
- STCF is expected to improve 1-2 orders of magnitudes in precision of hyperon CPV, and more opportunities in *K*, τ , *D*.