CPV at Belle and Belle II

Xiaodong Shi (师晓东) KEK, IPNS

FIND CP violation at electroweak scale and beyond USTC 2023.08.26-27

Matter-antimatter asymmetry

- In Big Bang theory, equal antimatter and matter in the initial \bullet period of this Universe. But now very large asymmetry between matter and antimatter.
- **CP violation (CPV)** is one of three conditions to explain the matter-antimatter asymmetry.
- CPV observed in K, B, D system.
- Standard Model (SM) describes the CPV by a phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix, but it's too small to explain the current large matter-antimatter asymmetry.
- hint of new physics from CPV?
- In my talk: recent Belle (II) results of ϕ_1, ϕ_2, ϕ_3 and CPV in charm.

- First physics run recorded in 2019
- 362/fb at Y(4S); goal: 50/ab.
- Belle has 711/fb at Y(4S)

- luminosity)

Belle and Belle II detector

Time dependent CPV measurement

- Asymmetric collision (boost effect): better measurement on displacement. (Belle II: $\Delta z \approx 130 \mu m$, Belle: $\Delta z \approx 200 \mu m$)
- Good vertex resolution: 15 μm ; 2 layers of PXD and 4 layers of SVD.
- Coherent $B\overline{B}$ pairs.

• High tagging efficiency (Belle II: $\epsilon_{tag} = (31.7 \pm 0.4)\%$; Belle: $\epsilon_{tag} = (30.1 \pm 0.4)\%$)

$b \rightarrow s\bar{q}q(q = d, s)$ process

• Gluonic penguin process:

- Shall be more sensitive to New physics.
- $S^{eff} = \sin(2\phi_1) + \Delta S$, ΔS may come from SM or NP.
- Using precise W.A. $\sin(2\phi_1) = 0.699 \pm 0.017$, measure ΔS , compare with SM's ΔS .

 B^0 $\rightarrow \eta' K_{\rm S}^0$

 $\Delta E = E_B^* - E_{beam}^*$

- Challenge: high background from $q\bar{q}$
- Train event-shape MVA for $q\bar{q}$ background
- Signal yield: $n_{sig} = 829 \pm 35$

 $\rightarrow \eta' K_{\rm S}^0$

New EPS result this week! • Get Δt shape of $q\bar{q}$ from sideband region. • Extract S_{CP} and C_{CP} from the fit in signal region. • Validate the fit with $B^{\pm} \rightarrow \eta' K^{\pm}$

$C_{CP} = 0.19 \pm 0.08 \pm 0.03$ $S_{CP} = 0.67 \pm 0.10 \pm 0.04$

HFLAV: $C_{CP} = -0.05 \pm 0.04 S_{CP} = 0.63 \pm 0.06$

• $\Delta S_{CP}(SM) = 0.01 \pm 0.01 (arXiv:hep-ph/$ <u>0505075</u>)

Other three $b \rightarrow s\bar{q}q(q = d, s)$

HFLAV: $C_{CP} = 0.01 \pm 0.14 S_{CP} = 0.74^{+0.11}_{-0.13}$

arXiv:2307.02802

HFLAV: $C_{CP} = -0.15 \pm 0.12 S_{CP} = -0.83 \pm 0.17$ HFLAV: $C_{CP} = 0.01 \pm 0.10 S_{CP} = 0.57 \pm 0.17$

arXiv:2305.07555

Radiative penguins $(B^0 \rightarrow K_S \pi^0 \gamma)$

- In SM, the mixing-induced CPV S_{CP} is helicity suppressed. e.g. $S_{CP}(B^0 \to K_S \pi^0 \gamma) = -0.035 \pm 0.017$ (arXiv:hep-ph/0406055)
- NP could contribute into S_{CP} significantly.

Radiative penguins $(B^0 \rightarrow K_S \pi^0 \gamma)$

- In SM, the mixing-induced CPV S_{CP} is helicity suppressed. e.g. $S_{CP}(B^0 \to K_S \pi^0 \gamma) = -0.035 \pm 0.017$ (arXiv:hep-ph/0406055)
- NP could contribute into S_{CP} significantly.

About reconstruction of $B^0 \to K_S \pi^0 \gamma$:

- integrated way.

Challenge: no prompt tracks; reconstruct vertex only from Ks using a beam-spot constraint. - The candidates with poor vertex reconstruction are only used to measure C_{CP} in a time-

• High multiplicity from fake beam background π^0 : use MVA methods to select single one.

 $B^0 \to K_{\rm S} \pi^0 \gamma$

• Consider exclusive decay $B^0 \to K^{*0}(K_{S}\pi^0)\gamma$ and inclusive decay separately.

Channel	<i>K</i> * ⁰ γ	$K_S \pi^0 \gamma$
$M_{K_S\pi^0}$ -region [$\frac{GeV}{c^2}$]]0.8, 1.0[[0.6, 0.8]or [0.8, 1.8]
Signal yield	385 <u>+</u> 24	171 ± 23

HFLAV: $K^{*0}\gamma$: $C_{CP} = -0.04 \pm 0.14 S_{CP} = -0.16 \pm 0.22$ $K_S \pi^0 \gamma$: $C_{CP} = -0.07 \pm 0.12 S_{CP} = -0.15 \pm 0.20$

*The HFLAV $K_S \pi^0 \gamma$ values include $K^{*0} \gamma$

 $C_{CP} = 0.10 \pm 0.13 \pm 0.03$ $S_{CP} = 0.00^{+0.27+0.03}_{-0.26-0.04}$

 $C_{CP} = -0.06 \pm 0.25 \pm 0.07$ $S_{CP} = 0.04^{+0.45}_{-0.44} \pm 0.10$

GNN Flavor Tagger (GFlaT)

- New flavor tagger (GFlaT) based on graph neural network (GNN).
- Use interrelation between particles.
- Gain **18%** relative tagging efficiency compared to category-based flavor tagger (CB FT).

CB FT:	$\epsilon_{tag} = (31.68 \pm 0.45 \pm 0.41)\%$
GFlaT:	$\epsilon_{tag} = (37.40 \pm 0.43 \pm 0.34)\%$

GNN Flavor Tagger (GFlaT)

- New flavor tagger (GFlaT) based on graph neural network (GNN).
- Use interrelation between particles.
- Gain **18%** relative tagging efficiency compared to category-based flavor tagger (CB FT).

by the
$$B^0 \to J/\psi K_S$$

~8% reduction in statistical uncertainty.

$C_{CP} = -0.035 \pm 0.026 \pm 0.012$ $0.724 \pm 0.035 \pm 0.014$

HFLAV: $C_{CP} = 0.000 \pm 0.020 S_{CP} = 0.695 \pm 0.019$

For ϕ_3 : GLW & GLS

- CPV in the interference $b \to c\bar{u}s$ and $b \to u\bar{c}s$ $\frac{A_{\sup}(B^- \to D^0K^-)}{A_{fav}(B^- \to D^0K^-)} = r_B e^{i(\delta_B - \phi_3)}$
- Irreducible error in SM calculation $\sim 10^{-7}$ [arXiv:1308.5663]

• W.A.
$$\phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}$$

• With the coming B data from LHCb and Belle II, the experimental precision is ~ 1.5° (50 ab^{-1} Belle II) ~ 0.4° (300 fb^{-1} LHCb)

 $\rightarrow \phi_3$ can be a "candle" of SM.

- Depends on the D decay final states, different methods:
 - BPGGSZ: self conjugated multi-body decays, e.g. $K_S^0 \pi^+ \pi^-$ [JHEP 02 2022, 063 (2022)]
 - **GLW**: CP eigenstates, e.g. $K_S^0 \pi^0$, $K^+ K^-$
 - **GLS**: SCS decays, e.g. $K_S^0 K^{\mp} \pi^{\pm}$
 - ...(ADS, TD)

GLW result (Belle+Bellell!)

• $B^{\pm} \to DK^{\pm}$ with $D \to K^0_S \pi^0$ (CP-odd) or $D \to K^+ K^-$ (CP-even)

$$\begin{aligned} R_{CP\pm} &= \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D^0K^-) + \mathcal{B}(B^+ \to \bar{D}^0K^+)} \\ &= 1 + r_B^2 + 2\eta_{CP}r_B\cos(\delta_B)\cos(\phi_3), \\ A_{CP\pm} &= \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)} \\ &= 2\eta_{CP}r_B\sin(\delta_B)\sin(\phi_3)/R_{CP\pm}. \end{aligned}$$

	$68.3\%~{ m CL}$	95.4% CL
	[8.5, 16.5]	[5.0, 22.0]
ϕ_3 (°)	[84.5, 95.5]	[80.0, 100.0]
	[163.3, 171.5]	[157.5, 175.0]
r_B	[0.321, 0.465]	[0.241, 0.522]

$\mathcal{R}_{CP+} = 1.164 \pm 0.081$
$\mathcal{R}_{CP-} = 1.151 \pm 0.074$
${\cal A}_{CP+} = (+12.5\pm5.8\pm5.8\pm5.8\pm5.8\pm5.8\pm5.8\pm5.8\pm5.8\pm5.8\pm5$
$\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm$
$\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm$

world average: $\phi_3(\circ) = 66.2^{+3.4}_{-3.6}$

 $r_B = 0.0996 \pm 0.0026$

GLS result (Belle+Bellell!)

• $B^{\pm} \to DK^{\pm}$ with $D \to K^0_S K^+ \pi^-$ (SS) or $D \to K^0_S K^- \pi^+$ (OS)

- Measure 4 Acp and 3 BR ratios.
- Get results in full D phase space and in the K*K region (large δ_D, κ_D).

In K*K region: $A_{\rm SS}^{DK} = 0.055 \pm 0.119 \pm 0.020,$ $A_{\rm OS}^{DK} = 0.231 \pm 0.184 \pm 0.014,$ $A_{\rm SS}^{D\pi} = 0.046 \pm 0.029 \pm 0.016,$ $A_{\rm OS}^{D\pi} = 0.009 \pm 0.046 \pm 0.009,$ $R_{\rm SS}^{DK/D\pi} = 0.093 \pm 0.012 \pm 0.005,$ $R_{\rm OS}^{DK/D\pi} = 0.103 \pm 0.020 \pm 0.006,$ $R_{\rm SS/OS}^{D\pi} = 2.412 \pm 0.132 \pm 0.019,$

arXiv:2306.02940

Moriond 2023 results /

- First Belle/Belle II result from this channel.
- The precision is worse than LCHb's[<u>arXiv</u>: 2002.08858], but consistent.
- With the D information from CLEO-c, will contributed in a combined ϕ_3 from Belle/ Bellell.

For $\phi_2: B^0 \to \pi\pi$

- The CKM angle with most poor precision at the moment: W.A. $\phi_2 = (85.2^{+4.8}_{-4.3})^{\circ}$ [HFLAV].
- Determined using $B \to \rho \rho$, $B \to \pi \pi$ isospin analysis: using the Br and A_{CP} to reduce hadronic uncertainties.

Unique Belle II capability to study all channels.

Last year: $\rho^+ \rho^0$, $\rho^+ \rho^-$ [arXiv:2206.12362, 2208.03554]

We have $\pi\pi$ results now.

For $\pi^0 \pi^0$, achieve Belle Br precision using only 1/3 of data.

Ba 500 600 400 400 200 2.5 -2.5 -0.10

CPV in $D_{(s)}$

- Belle (II) is also a charm factory $\sigma(e^+e^- \rightarrow$
- T-odd CPV: indirectly search for CPV under CPT symmetry conservation.

$$\begin{aligned} \mathcal{L}_{T} \text{ observable defined by a triple mixed product } \mathcal{L}_{T} &= (\vec{p}_{1} \times \vec{p}_{2}) \cdot \\ \mathcal{L}_{3}, \text{ satisfying } \operatorname{CP}(\mathcal{L}_{T}) = -\operatorname{C}(\mathcal{L}_{T}) = -\overline{\mathcal{L}}_{T} \end{aligned}$$

$$\mathcal{A}_{T} &= \frac{\Gamma_{+}(\mathcal{L}_{T} > 0) - \Gamma_{+}(\mathcal{L}_{T} < 0)}{\Gamma_{+}(\mathcal{L}_{T} > 0) + \Gamma_{+}(\mathcal{L}_{T} < 0)} \quad \overline{\mathcal{A}}_{T} &= \frac{\Gamma_{-}(-\overline{\mathcal{L}}_{T} > 0) - \Gamma_{-}(-\overline{\mathcal{L}}_{T} < 0)}{\Gamma_{-}(-\overline{\mathcal{L}}_{T} > 0) + \Gamma_{-}(-\overline{\mathcal{L}}_{T} < 0)} \end{aligned}$$

$$\text{T-odd } \operatorname{CPV: defined as } a_{CP}^{T-odd} \equiv \frac{1}{2}(\mathcal{A}_{T} - \overline{\mathcal{A}}_{T}). \end{aligned}$$

- $D^0 \to K^0_S K^0_S \pi^+ \pi^- \text{PRD 107, 052001(2023)}$
- $D^+_{(s)} \to K^+ K^0_S h^+ h^- \operatorname{arXiv}:2305.11405$

$$\rightarrow c\bar{c}) = 1.3nb$$

• All results consistent with zero CP Violation.

CPV in $\Lambda_c^+ \to \Lambda h^+$ and $\Sigma^0 h^+$

• To date, no CPV observation in baryon sector. Only first evidence in beauty baryon (Nature Physics 13, 391 (2017))

 $A_{\rm raw}(\Lambda_c^+ \to \Lambda K^+) \approx A_{CP}^{\Lambda_c^+ \to \Lambda K^+} + A_{CP}^{\Lambda \to p\pi^-} + A_{\varepsilon}^{\Lambda} + A_{\varepsilon}^{K^+} + A_{FB}^{\Lambda_c^+}$

$$\begin{aligned} A_{\rm raw}^{\rm corr}(\Lambda_c^+ \to \Lambda K^+) &- A_{\rm raw}^{\rm corr}(\Lambda_c^+ \to \Lambda \pi^+) \\ &= A_{CP}^{\rm dir}(\Lambda_c^+ \to \Lambda K^+) - A_{CP}^{\rm dir}(\Lambda_c^+ \to \Lambda \pi^+) \,. \end{aligned}$$

- $A_{CP}^{dir}(\Lambda_c^+ \to \Lambda K^+) = (2.1 \pm 2.6 \pm 0.1)\%$
- $A_{CP}^{dir}(\Lambda_c^+ \to \Sigma^0 K^+) = (2.5 \pm 5.4 \pm 0.4) \%$
- Also measure α -induced CPV (α is the decay asymmetry parameter)

Channel	$k = \alpha_{\Lambda_c^+} \alpha$	$\overline{k} = \alpha_{\Lambda_c^-} \alpha_+$	$\alpha_{\Lambda_c^+}$	$\alpha_{\overline{\Lambda}c}$	A^{α}_{CP}	W.Α. <i>Α</i> ^α _{CP}	our $A^{lpha}_{CP}(\Lambda o p\pi^-)$
$\Lambda_c^+ ightarrow \Lambda K^+$	-0.418 ± 0.053	-0.442 ± 0.053	$-0.566 \pm 0.071 \pm 0.028$	$0.592 \pm 0.070 \pm 0.079$	$-0.023 \pm 0.086 \pm 0.071$	-	_
$\Lambda_c^+ ightarrow \Lambda \pi^+$	-0.582 ± 0.006	-0.565 ± 0.006	$-0.784 \pm 0.008 \pm 0.006$	$0.754 \pm 0.008 \pm 0.018$	$+0.020\pm 0.007\pm 0.013$	-0.07 ± 0.22	$+0.017\pm0.007\pm0.012$
$\Lambda_c^+ o \Sigma^0 K^+$	$-0.43\ \pm 0.18$	-0.37 ± 0.21	$-0.58 \pm 0.24 \pm 0.09$	$0.49\ \pm 0.28\ \pm 0.14$	$+0.08\ \pm 0.35\ \pm 0.14$	-	_
$\Lambda_c^+ o \Sigma^0 \pi^+$	-0.340 ± 0.016	-0.358 ± 0.017	$-0.452\pm0.022\pm0.023$	$0.473 \pm 0.023 \pm 0.035$	$-0.023 \pm 0.034 \pm 0.030$	-	$-0.026 \pm 0.034 \pm 0.030$
combined: $\pm 0.012 \pm 0.007 \pm 0.011$							

No evidence of CPV is found.

combined: $+0.013 \pm 0.007 \pm 0.011$

Sci. Bull. 68 (2023) 583

Summary

- Many new CPV results from Belle (II) this year (this week)!
- Improved flavor tagger (GFIaT) and full PXD are ready for new run!
- Will re-start data taking from the end of 2023!
- Extra news: <u>new result on EPS</u> of $B^+ \to K^+ \nu \bar{\nu}$: BR 3.6 σ , 2.8 σ vs standard model.

<u>KLong and muon detector</u> Resistive Plate Chambers (barrel outer layers) Scintillator + WLSF + SiPM's (end-caps , inner 2 barrel layers)

> Particle Identification TOP detector system (barrel) Prox. focusing Aerogel RICH (fwd)

> > positrons (4 GeV)

Belle II has excellent tracking, vertexing, and particle ID performance