CPV at Belle and Belle II

1 FIND CP violation at electroweak scale and beyond USTC 2023.08.26-27 *Belle*

Xiaodong Shi (师晓东) KEK, IPNS

Matter-antimatter asymmetry

- In Big Bang theory, equal antimatter and matter in the initial period of this Universe. But now very large asymmetry between matter and antimatter.
- **CP violation (CPV)** is one of three conditions to explain the matter-antimatter asymmetry.
- CPV observed in K, B, D system.
- Standard Model (SM) describes the CPV by a phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix, but it's too small to explain the current large matter-antimatter asymmetry.
- hint of new physics from CPV?
- In my talk: recent Belle (II) results of ϕ_1 , ϕ_2 , ϕ_3 and CPV in $\begin{pmatrix} B\text{-}DK & B\text{-}J/\psi K\ \phi_3 & 0 & 0 \end{pmatrix}$ charm.

- First physics run recorded in 2019
- 362/fb at Y(4S); goal: 50/ab.
- Belle has 711/fb at Y(4S)
-
-
- luminosity)

Belle and Belle II detector

Time dependent CPV measurement

- Asymmetric collision (boost effect): better measurement on displacement. (Belle II: $\Delta z \approx 130 \mu m$, Belle: $\Delta z \approx 200 \mu m$)
- Good vertex resolution: 15 μ *m*; 2 layers of PXD and 4 layers of SVD.
- Coherent $B\bar{B}$ pairs.
-

• High tagging efficiency (Belle II: $\epsilon_{tag} = (31.7 \pm 0.4) \%$; Belle: $\epsilon_{tag} = (30.1 \pm 0.4) \%$)

- Shall be more sensitive to **New physics**.
- $S^{e_{JJ}} = \sin(2\phi_1) + \Delta S$, ΔS may come from SM or NP. $S^{eff} = \sin(2\phi_1) + \Delta S$, ΔS
- Using precise W.A. , measure ΔS , compare with SM's ΔS . $\sin(2\phi_1) = 0.699 \pm 0.017$, measure ΔS

• Gluonic penguin process:

$b \rightarrow s\bar{q}q(q=d,s)$ process

 $B^0 \rightarrow \eta' K^0_S$ *S*

 $\Delta E = E_B^* - E_{\text{beam}}^*$

- Challenge: high background from $q\bar{q}$
- Train event-shape MVA for $q\bar{q}$ background
- Signal yield: $n_{sig} = 829 \pm 35$

 $B^0 \rightarrow \eta' K^0_S$ *S*

• Get Δt shape of $q\bar{q}$ from sideband region. • Extract S_{CP} and C_{CP} from the fit in signal region. • Validate the fit with $B^{\pm} \to \eta' K^{\pm}$ New EPS result this week!

$C_{CP} = 0.19 \pm 0.08 \pm 0.03$ $S_{CP} = 0.67 \pm 0.10 \pm 0.04$

HFLAV: $C_{CP} = -0.05 \pm 0.04$ $S_{CP} = 0.63 \pm 0.06$

• $\Delta S_{CP}({\rm SM})=0.01\pm0.01$ ([arXiv:hep-ph/](https://arxiv.org/abs/hep-ph/0505075) [0505075\)](https://arxiv.org/abs/hep-ph/0505075) $\Delta S_{CP}(\text{SM}) = 0.01 \pm 0.01$

Other three $b \rightarrow s\bar{q}q(q=d,s)$

HFLAV: $C_{CP} = 0.01 \pm 0.14 S_{CP} = 0.74^{+0.11}_{-0.13}$

HFLAV: $C_{CP} = -0.15 \pm 0.12$ $S_{CP} = -0.83 \pm 0.17$ HFLAV: $C_{CP} = 0.01 \pm 0.10$ $S_{CP} = 0.57 \pm 0.17$

9

[arXiv:2307.02802](https://arxiv.org/abs/2307.02802) [arXiv:2305.07555](https://arxiv.org/abs/2305.07555)

Radiative penguins $(B^0 \rightarrow K_S \pi^0)$

- In SM, the mixing-induced CPV S_{CP} is helicity suppressed. e.g. ([arXiv:hep-ph/0406055](https://arxiv.org/abs/hep-ph/0406055)) $S_{CP}(B^0 \to K_S \pi^0 \gamma) = -0.035 \pm 0.017$
- NP could contribute into S_{CP} significantly.

Radiative penguins $(B^0 \rightarrow K_S \pi^0)$

- In SM, the mixing-induced CPV S_{CP} is helicity suppressed. e.g. ([arXiv:hep-ph/0406055](https://arxiv.org/abs/hep-ph/0406055)) $S_{CP}(B^0 \to K_S \pi^0 \gamma) = -0.035 \pm 0.017$
- NP could contribute into S_{CP} significantly.

About reconstruction of $B^{\vee} \to K_{S} \pi^{\vee} \gamma$: $B^0 \to K_S \pi^0 \gamma$

-
- The candidates with poor vertex reconstruction are only used to measure C_{CP} in a timeintegrated way.
-

• Challenge: no prompt tracks; reconstruct vertex only from Ks using a beam-spot constraint.

• High multiplicity from fake beam background π^0 : use MVA methods to select single one.

 $B^0 \rightarrow K_S \pi^0$ *γ*

• Consider exclusive decay $B^0 \to K^{*0}(K_S \pi^0) \gamma$ and inclusive decay separately.

HFLAV: $K^{*0}\gamma$: $C_{CP} = -0.04 \pm 0.14 S_{CP} = -0.16 \pm 0.22$ $K_S \pi^0 \gamma$: $C_{CP} = -0.07 \pm 0.12 S_{CP} = -0.15 \pm 0.20$

*The HFLAV $K_S \pi^0 \gamma$ values include $K^{*0} \gamma$

 $C_{CP} = 0.10 \pm 0.13 \pm 0.03$ $S_{CP} = 0.00^{+0.27+0.03}_{-0.26-0.04}$

 $C_{CP} = -0.06 \pm 0.25 \pm 0.07$ $S_{CP} = 0.04^{+0.45}_{-0.44} \pm 0.10$

GNN Flavor Tagger (GFlaT)

- New flavor tagger (GFlaT) based on graph neural network (GNN).
- Use interrelation between particles.
- Gain **18%** relative tagging efficiency compared to category-based flavor tagger (CB FT).

GNN Flavor Tagger (GFlaT)

- New flavor tagger (GFlaT) based on graph neural network (GNN).
- Use interrelation between particles.
- Gain **18%** relative tagging efficiency compared to category-based flavor tagger (CB FT).

by the
$$
B^0 \rightarrow J/\psi K_S
$$

• ~8% reduction in statistical uncertainty.

$C_{CP} = -0.035 \pm 0.026 \pm 0.012$ $0.724 \pm 0.035 \pm 0.014$

HFLAV: $C_{CP} = 0.000 \pm 0.020$ $S_{CP} = 0.695 \pm 0.019$

• W.A.
$$
\phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}
$$

• With the coming B data from LHCb and Belle II, the experimental precision is $\sim 1.5^{\circ}$ (50 ab⁻¹ Belle II) ~0.4° $(300 fb⁻¹ LHCb)$

 \longrightarrow ϕ_3 can be a "candle" of SM.

- Depends on the D decay final states, different methods:
	- BPGGSZ: self conjugated multi-body decays, e.g. [\[JHEP 02 2022, 063 \(2022\)\]](https://link.springer.com/article/10.1007/JHEP02(2022)063) *K*0 *Sπ*+*π*[−]
	- **GLW**: CP eigenstates, e.g. $K_S^0 \pi^0, K^+ K^-$
	- GLS: SCS decays, e.g. $K_S^0 K^\mp \pi^\pm$
	- …(ADS, TD)

For *ϕ*3**: GLW & GLS**

- CPV in the interference $b \rightarrow c\bar{u}s$ and $b \rightarrow u\bar{c}s$
- Irreducible error in SM calculation $\sim 10^{-7}$ [arXiv:[1308.5663\]](https://arxiv.org/abs/1308.5663)

GLW result (Belle+BelleII!)

• $B^{\pm} \to D K^{\pm}$ with $D \to K_S^0 \pi^0$ (CP-odd) or $D \to K^+ K^-$ (CP-even)

$$
R_{CP\pm} = \frac{\mathcal{B}(B^{-} \to D_{CP\pm}K^{-}) + \mathcal{B}(B^{+} \to D_{CP\pm}K^{+})}{\mathcal{B}(B^{-} \to D^{0}K^{-}) + \mathcal{B}(B^{+} \to \bar{D}^{0}K^{+})}
$$

= 1 + r_B² + 2\eta_{CP}r_{B}\cos(\delta_{B})\cos(\phi_{3}),

$$
A_{CP\pm} = \frac{\mathcal{B}(B^{-} \to D_{CP\pm}K^{-}) - \mathcal{B}(B^{+} \to D_{CP\pm}K^{+})}{\mathcal{B}(B^{-} \to D_{CP\pm}K^{-}) + \mathcal{B}(B^{+} \to D_{CP\pm}K^{+})}
$$

= 2\eta_{CP}r_{B}\sin(\delta_{B})\sin(\phi_{3})/R_{CP\pm}.

world average: ϕ_3 (\circ) = 66.2 $^{+3.4}_{-3.6}$

 r_B = 0.0996 \pm 0.0026

GLS result (Belle+BelleII!)

• $B^{\pm} \to DK^{\pm}$ with $D \to K_S^0 K^+\pi^-$ (SS) or $D \to K_S^0 K^-\pi^+$ (OS)

- Measure 4 Acp and 3 BR ratios.
- Get results in full D phase space and in the K*K region (large δ_D, κ_D).

In K*K region: $A_{\rm SS}^{DK} = 0.055 \pm 0.119 \pm 0.020,$ $A_{\rm OS}^{DK} = 0.231 \pm 0.184 \pm 0.014,$ $A_{\rm SS}^{D\pi} = 0.046 \pm 0.029 \pm 0.016,$ $A_{\text{OS}}^{D\pi} = 0.009 \pm 0.046 \pm 0.009,$ $R_{\rm SS}^{DK/D\pi} = 0.093 \pm 0.012 \pm 0.005,$ $R_{\rm OS}^{DK/D\pi} = 0.103 \pm 0.020 \pm 0.006,$ $R_{\rm SS/OS}^{D\pi} = 2.412 \pm 0.132 \pm 0.019,$

Moriond 2023 results

[arXiv:2306.02940](https://arxiv.org/abs/2306.02940)

- First Belle/Belle II result from this channel.
- The precision is worse than LCHb's [[arXiv:](https://arxiv.org/abs/2002.08858) [2002.08858](https://arxiv.org/abs/2002.08858)], but consistent.
- With the D information from CLEO-c, will contributed in a combined ϕ_3 from Belle/ BelleII.

- The CKM angle with most poor precision at the moment: W.A. $\phi_2 = (85.2^{+4.0}_{-4.3})^{\circ}$ [\[HFLAV\]](https://hflav-eos.web.cern.ch/hflav-eos/triangle/latest/). $\phi_2 = (85.2^{+4.8}_{-4.3})^{\circ}$
- Determined using $B\to\rho\rho$, $B\to\pi\pi$ isospin analysis: using the Br and A_{CP} to reduce hadronic uncertainties.

Last year: ρ ⁺ ρ ⁰, ρ ⁺ ρ ⁻[arXiv:<u>2206.12362,</u> [2208.03554\]](https://arxiv.org/abs/2208.03554)

We have $\pi\pi$ results now.

Unique Belle II capability to study all channels.

For , achieve Belle Br precision using *π*0 *π*0 only 1/3 of data.

Cand. / 10 MeV 600 400 200 Pull -0.10

> 0.002 GeV/c^2 45 40 35 30 25 Events per 20 15 10 Pull

50

CPV in *D*(*s*)

- Belle (II) is also a charm factory $\sigma(e^+e^- \rightarrow$
- T-odd CPV: indirectly search for CPV under CPT symmetry conservation.

$$
C_T
$$
 observable defined by a triple mixed product $C_T = (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$, satisfying $\text{CP}(C_T) = -C(C_T) = -\overline{C}_T$
\n
$$
A_T = \frac{\Gamma_+(C_T > 0) - \Gamma_+(C_T < 0)}{\Gamma_+(C_T > 0) + \Gamma_+(C_T < 0)} \quad \overline{A}_T = \frac{\Gamma_-(-\overline{C}_T > 0) - \Gamma_-(-\overline{C}_T < 0)}{\Gamma_-(-\overline{C}_T > 0) + \Gamma_-(-\overline{C}_T < 0)}
$$
\n2

\n2

- $P^0 \to K_S^0 K_S^0 \pi^+ \pi^-$ [PRD 107, 052001\(2023\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.052001)
- $D_{(s)}^+$ → $K^+K_S^0h^+h^-$ [arXiv:2305.11405](https://arxiv.org/abs/2305.11405)

$$
\rightarrow c\bar{c}) = 1.3nb
$$

• All results consistent with zero CP Violation.

\mathbf{CPV} in $\Lambda_c^+ \to \Lambda h^+$ and $\Sigma^0 h^+$

• To date, no CPV observation in baryon sector. Only first evidence in beauty baryon [\(Nature Physics 13, 391 \(2017\)\)](https://www.nature.com/articles/nphys4021)

 $\boxed{{\color{blue}A_{\rm raw}(A_c^+\to A K^+)}\approx A_{CP}^{A_c^+\to A K^+}+A_{CP}^{A\to p\pi^-}+A_{\epsilon}^{A}+A_{\epsilon}^{K^+}+A_{\rm FB}^{A_c^+}}$

$$
A_{\text{raw}}^{\text{corr}}(A_c^+ \to AK^+) - A_{\text{raw}}^{\text{corr}}(A_c^+ \to A\pi^+)
$$

= $A_{CP}^{\text{dir}}(A_c^+ \to AK^+) - A_{CP}^{\text{dir}}(A_c^+ \to A\pi^+).$

- $A_{CP}^{dir}(\Lambda_c^+ \to \Lambda K^+) = (2.1 \pm 2.6 \pm 0.1) \%$
- $A_{CP}^{dir}(\Lambda_c^+ \to \Sigma^0 K^+) = (2.5 \pm 5.4 \pm 0.4)\%$
- Also measure α -induced CPV (α is the decay asymmetry parameter)

• No evidence of CPV is found.

combined: $+0.013 \pm 0.007 \pm 0.011$

[Sci. Bull. 68 \(2023\) 583](https://www.sciencedirect.com/science/article/abs/pii/S2095927323001159?via=ihub)

Summary

- Many new CPV results from Belle (II) this year (this week)!
- Improved flavor tagger (GFlaT) and full PXD are ready for new run!
- Will re-start data taking from the end of 2023!
- Extra news: <u>[new result on EPS](https://indico.desy.de/event/34916/contributions/149769/attachments/84417/111854/Belle%20II%20highlights.pdf)</u> of $B^+ \to K^+ \nu \bar{\nu}$: BR 3.6 σ , 2.8 σ vs standard model.

KLong and muon detector Resistive Plate Chambers (barrel outer layers) Scintillator + WLSF + SiPM's (end-caps, inner 2 barrel layers)

> **Particle Identification** TOP detector system (barrel) Prox. focusing Aerogel RICH (fwd)

> > positrons (4 GeV)

Belle II has excellent tracking, vertexing, and particle ID performance