Latest Time-dependent Measurements of B decays at LHCb

Peilian Li /李佩莲 (CERN)

FIND论坛学术研讨会, USTC 2023-08-26

Outline

- Time-dependent CP violation
- Flavour tagging at LHCb
- $\sin 2\beta$ measurements
- ϕ_s measurements

•
$$B^0_{(s)} \to h^+ h^- \& \tau^{\text{effective}}_{B^0_s}$$

• Prospects & summary

CKM matrix

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5) \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix}$$

• Key test of the SM: Verify unitarity of CKM matrix

- Magnitudes: branching fractions or mixing frequencies
- Phases: CP violation measurement

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

Opportunities for new physics

• New physics (NP) short-distance contributions can influence mixing $m_{12}^q = m_{12}^{SM,q} \cdot \Delta_q^{NP}$ [PRD 86(2012)033008]

 Through B mixing, NP energy scales of up to 20 TeV for tree-level NP or 2 TeV for NP in loops can be probed
 [PRD 89(2014)033016]

Decay of neutral B meson

• Decay rate of initial B or \bar{B}

$$|\langle f|H|B\rangle|^{2} = \frac{1}{2}e^{-\Gamma t}|A_{f}|^{2}\left\{ D\cosh\left(\frac{\Delta\Gamma}{2}t\right) + A_{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + C\cos(\Delta mt) \mp S\sin(\Delta mt) \right\}$$

direct *CP CP* in interference of mixing & decay

- Mass difference $\Delta m_{(s)} = M_H M_L = 2 |M_{12}| \rightarrow \text{oscillation frequency}!$
- Decay-width difference $\Delta \Gamma_{(s)} = \Gamma_L \Gamma_H = 2 |\Gamma_{12}| \cos \phi_{12}$

require time-dependent measurements!

- Benchmark for the flavor-tagged timedependent measurement
- World-best measurement:

 $\Delta m_s = (17.7656 \pm 0.0057) \ ps^{-1}$

Time-dependent CP asymmetry

$$\begin{split} A_{CP}(t) &= \frac{\Gamma_{\bar{B}_{(s)}^{0} \to f}(t) - \Gamma_{B_{(s)}^{0} \to f}(t)}{\Gamma_{\bar{B}_{(s)}^{0} \to f}(t) + \Gamma_{B_{(s)}^{0} \to f}(t)} = \frac{-C_{f}\cos(\Delta m_{d(s)}t) + S_{f}\sin(\Delta m_{d(s)}t)}{\cosh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right) + A_{f}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right)} \\ C_{f} &\equiv \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}, \qquad S_{f} \equiv \frac{2\mathrm{Im}\lambda_{f}}{1 + |\lambda_{f}|^{2}}, \qquad A_{f}^{\Delta\Gamma} \equiv -\frac{2\mathrm{Re}\lambda_{f}}{1 + |\lambda_{f}|^{2}} \\ &- \mathrm{CPV} \text{ in decay or mixing if } |\lambda_{f}| \neq 1 \qquad \lambda_{f} \equiv \frac{q}{p}\frac{\overline{A}_{f}}{A_{f}} \end{split}$$

 $\Rightarrow \text{Experimentally}$ $A_{CP}(t) \propto e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot (C_f \cos(\Delta m_{(s)}t) + \eta_f S_f \sin(\Delta m_{(s)}t))$

- Flavour tagging of $B_{(s)}^0$ at production: probability of wrong tag ω
- Excellent decay-time resolution (vertex resolution)
- *CP* eigenvalue of the final state η_f

Flavour tagging

- Same-side (SS) tagging: Use charge of K/ π produced in the fragmentation
- Opposite-side (OS) tagging: charge of leptons or hadrons from the other b hadrons

Tagging power	$B^0 o \psi K^0_S$	$B_s^0 \to J/\psi KK$	$B^0_s \to \phi \phi$
$\epsilon_{ m tag}(1-2\omega)^2$	(4-6)%	4.3%	6%

* tagging efficiency ϵ_{tag} , mistag rate ω

Decay-time resolution

- Decay time resolution dilutes oscillations, $\mathscr{D} = exp(-\frac{1}{2}\sigma_{\text{eff}}^2\Delta m_s^2)$
- Significant for B_s^0 system, negligible for B^0

•
$$B^0 \rightarrow \psi K_S^0$$
: $\sigma_{MC} \sim 60$ fs
• $B_s^0 \rightarrow J/\psi KK \& B_s^0 \rightarrow \phi \phi$
 $\delta_t^2 = (\frac{m}{-})^2 \sigma_t^2 + (\frac{t}{-})^2 \sigma_n^2$

$$p \downarrow p \downarrow$$

~ 200 µm $\sigma_p/p \sim 0.4\%$

Effective Gaussian resolution model: $\sigma_{eff} \text{ as a function of per-event } \delta_t \text{ (11 bins)}$

$$\sigma_{eff} \sim 42(3) \text{ fs} \rightarrow \mathcal{D} = 0.757$$

 $\sin 2\beta \text{ in } B^0 \to \psi K_S^0$

- Tree diagram dominated: NP in mixing
- Three decay modes in $B^0 \to \psi K_S^0$ (CP-odd only)

sWeight from Mass fit to subtract background

 $egin{aligned} &N_{J\!/\psi\,(
ightarrow\mu\mu)K_{
m S}^0} = 306\,322\pm619\ &N_{J\!/\psi\,(
ightarrowee)K_{
m S}^0} = 42\,870\pm269\ &N_{\psi(2S)(
ightarrow\mu\mu)K_{
m S}^0} = 23\,570\pm164 \end{aligned}$

•
$$B^0 \to J/\psi(\mu^+\mu^-)K_s^0$$
 (85%)
• $B^0 \to J/\psi(e^+e^-)K_s^0$ (12%)
• $B^0 \to \psi(2S)(\mu^+\mu^-)K_s^0$ (6%)

 $\sin 2\beta$ in $B^0 \to \psi K_S^0$

• Simultaneous fits to the decay time of B^0

-0.20

<u>0.50</u>

0.55

0.60

P. Li · FIND - CPV@EW Workshop · 10

0.75

0.80

0.85

 $S_{\psi K_{\mathrm{c}}^0}$

0.70

0.65

$\sin 2\beta$ combinations

*Belle II results is not included, which should not affect the current WA significantly

- Consistent with other measurements, still statistical uncertainty limited
- LHCb results dominate the latest World Average

$\sin 2\beta$ combinations

- Consistent with other measurements, still statistical uncertainty limited
- LHCb results dominate the latest World Average

$\phi_s \text{ in } B_s^0 \to J/\psi\phi(KK)$

arXiv: 2308.01468 submitted to PRL

- Golden model to measure $\phi_s : b \to c\bar{c}s$ transition process $B_s^0 \to J/\psi\phi(KK)$
- Sensitive to New Physics, small contribution could be clearly visible

sWeight from Mass fit to subtract background

Total signal candidates ~349000

- $-\beta_s^{\text{SM}} = -0.0368^{+0.0009}_{-0.0006}$ rad
- 2022 world average: $\phi_s^{c\bar{c}s,WA} = (-0.049 \pm 0.019)$ rad
- Tension between $\Delta\Gamma_s$ measurements from different experiments

 $\phi_{\rm c}$ in $B_{\rm c}^0 \to J/\psi \phi(KK)$

• Time-dependent flavour-tagged angular analysis for $B_s^0 \to VV$ $\mathscr{P}(t, \theta_K, \theta_\mu, \phi_h | \delta_t) \propto \sum_{k=1}^{10} N_k h_k(t) f_k(\theta_K, \theta_\mu, \phi_h) \to \phi_s, \Delta m_s, \Delta \Gamma_s, \Gamma_s - \Gamma_d$

 $\phi_{\rm s}$ in $B_{\rm s}^0 \to J/\psi KK$

arXiv: 2308.01468 submitted to PRL

- The most precise measurement in single channel to date
- Compatible with prediction assuming the SM $-\beta_s^{SM} = -0.0368^{+0.0009}_{-0.0006}$ rad
- No evidence of CP violation
- Consistent and combined with all LHCb measurements $(B_s^0 \rightarrow J/\psi hh, D_s^+ D_s^-, \psi(2S)KK) \quad \phi_s = -0.031 \pm 0.018 \text{ rad}$

ϕ_s polarisation dependent fit

- New physics effects can vary in different polarisation states
 - Allow $|\lambda|$ and ϕ_s to differ in polarisation states
 - Shows no evidence for any polarisation dependence

Parameters	Values (stat. unc. only)
ϕ_s^0 [rad] $\phi_s^{\parallel} - \phi_s^0$ [rad] $\phi_s^{\perp} - \phi_s^0$ [rad] $\phi_s^{\ S} - \phi_s^0$ [rad] $ \lambda^0 $ $ \lambda^{\parallel}/\lambda^0 $ $ \lambda^{\perp}/\lambda^0 $	$\begin{array}{c} -0.034 \pm 0.023 \\ -0.002 \pm 0.021 \\ -0.001 \substack{+\ 0.020 \\ -\ 0.021 \\ 0.022 \substack{+\ 0.027 \\ -\ 0.026 \\ 0.969 \substack{+\ 0.025 \\ -\ 0.024 \\ 0.982 \substack{+\ 0.055 \\ -\ 0.052 \\ 1\ 107 \substack{+\ 0.081 \\ 0.081 \end{array}}$
$\frac{ \lambda /\lambda }{ \lambda^{S}/\lambda^{0} }$	$\frac{1.107 - 0.075}{1.121 + 0.085} \\ - 0.078$

ϕ_s combinations in $b \rightarrow c\bar{c}s$ transition

 Previous World Average:
 New World Average: (preliminary)

 $\phi_s^{c\bar{c}s} = -0.049 \pm 0.019$ rad
 $\phi_s^{c\bar{c}s} = -0.050 \pm 0.016$ rad (16%)

 $\phi_s^{J/\psi KK} = -0.070 \pm 0.022$ rad
 $\phi_s^{c\bar{c}s} = -0.039 \pm 0.017$ rad (23%)

Consistent with the Global fits with SM assumption

 $\phi_s^{\text{CKMFitter}} \approx -2\beta_s = (-0.0368^{+0.0006}_{-0.0009}) \text{ rad} \quad \phi_s^{\text{UTFitter}} = (-0.0370 \pm 0.0010) \text{ rad}$

ϕ_s in $b \rightarrow s\bar{s}s$ transition

- Benchmark channel $B_s^0 \to \phi(KK)\phi(KK)$ proceeds via $b \to s\bar{s}s$ transition
 - Penguin dominated decay
 - NP contributes in penguin or mixing process

- Similar analysis strategy as $B_s^0 \to J/\psi \phi(KK)$
 - → flavour-tagged time-dependent angular analysis

LHCb-PAPER-2023-001 accepted by PRL

 $\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009$ rad, $|\lambda| = 1.004 \pm \pm 0.030 \pm 0.009$

- The most precise measurement in any penguin dominated B decays
- No polarisation dependence is observed

CP asymmetry in $B_{(s)}^0 \rightarrow h^+h^-$

JHEP03(2021)075

- Simultaneous fit to the invariant mass, $B_{(s)}^0$ decay time and tagging decision for $B^0 \to \pi^+\pi^-$, $B_s^0 \to K^+K^-$, $B_{(s)}^0 \to K\pi$, providing constraints to α , γ , $\sin 2\beta_s$
- The first observation of time-dependent *CP* violation in B_s^0 decay

Effective lifetime measurements in $B_s^0 \rightarrow J/\psi\eta$

- <u>EPJC83 (2023) 629</u>
- *CP*-even decay $B_s^0 \to J/\psi(\mu^+\mu^-)\eta(\gamma\gamma)$ allows to determine $\tau_L = 1/\Gamma_L$
- Simultaneous fit to invariant mass and decay time

Agree with the SM prediction and other measurements

Effective lifetime measurements in $B_s^0 \rightarrow J/\psi \eta'$

- Simultaneous analysis of *CP*-even decay $B_s^0 \to J/\psi(\mu^+\mu^-)\eta'(\pi^+\pi^-\gamma)$ and *CP*-odd decay $B_s^0 \to J/\psi\rho^0$ to determine $\Delta\Gamma_s$
- Fit to the ratio of decay time R(t) in 8 bins

LHCb-PAPER-2023-025 in preparation

Agree with the World Average: $0.074 \pm 0.006 \text{ ps}^{-1}$

Looking at future

- Further precision improvement with more data and more decay modes
- Great opportunities to search for NP indirectly, up to > TeV scale

Control of penguin contribution

- $\sigma(\phi_s) \sim 0.016$ comparable with the theoretical estimation of $\Delta \phi_s^{penguin} \sim 1^\circ \approx 0.017$, better control of penguin effect necessary
- Combined analysis of penguin contributions in ϕ_s and ϕ_d (sin 2 β), using SU(3) flavor symmetry

$$\phi_d = \sin(2\beta^{\text{tree}}) + \Delta \phi_d^{\text{penguin}} + \phi_d^{\text{NP}}$$
$$\phi_s = \phi_s^{\text{tree}} + \Delta \phi_s^{\text{penguin}} + \phi_s^{\text{NP}}$$

J.Phys.G 48 (2021) 6, 065002

Summary

- LHCb dominates the world average of many CPV measurements
- ✓ Flag-ship time-dependent measurements of CP violation in *B*-meson decays with full LHCb data sample, providing the most precise results for
 - $\checkmark \phi_s$ in $b \rightarrow c\bar{c}s$ transition, $\sigma(\phi_s) \sim 20$ mrad
 - $\checkmark \phi_s^{s\bar{s}s}$ in penguin dominant *B* decays
 - $\checkmark \sin 2\beta = 0.716 \pm 0.013 (\text{stat.}) \pm 0.008 (\text{syst.})$
- \checkmark New results for $\Delta\Gamma_{\!\scriptscriptstyle S}$ and $\Gamma_{\!\scriptscriptstyle L}$
- Looking forward to further test of the SM and search for new physics with more data from Upgrade I & II

Back up slides

Systematics for $\sin 2\beta$

Source	$\sigma(S)$	$\sigma(C)$
Fitter validation	0.0004	0.0006
$\Delta\Gamma_d$ uncertainty	0.0055	0.0017
FT calibration portability	0.0053	0.0001
FT $\Delta \epsilon_{\text{tag}}$ portability	0.0014	0.0017
Decay-time bias model	0.0007	0.0013

$$\begin{split} S^{\mathrm{Run}\;2}_{J/\psi(\to\mu^+\mu^-)K^0_{\mathrm{S}}} &= & 0.714 \pm 0.015 \,(\mathrm{stat}) \pm 0.0074 \,(\mathrm{syst}) \\ C^{\mathrm{Run}\;2}_{J/\psi(\to\mu^+\mu^-)K^0_{\mathrm{S}}} &= & 0.013 \pm 0.014 \,(\mathrm{stat}) \pm 0.0025 \,(\mathrm{syst}) \\ S^{\mathrm{Run}\;2}_{\psi(2S)K^0_{\mathrm{S}}} &= & 0.647 \pm 0.053 \,(\mathrm{stat}) \pm 0.018 \quad(\mathrm{syst}) \\ C^{\mathrm{Run}\;2}_{\psi(2S)K^0_{\mathrm{S}}} &= -0.083 \pm 0.048 \,(\mathrm{stat}) \pm 0.0053 \,(\mathrm{syst}) \\ S^{\mathrm{Run}\;2}_{J/\psi(\to e^+e^-)K^0_{\mathrm{S}}} &= & 0.752 \pm 0.037 \,(\mathrm{stat}) \pm 0.084 \quad(\mathrm{syst}) \\ C^{\mathrm{Run}\;2}_{J/\psi(\to e^+e^-)K^0_{\mathrm{S}}} &= & 0.046 \pm 0.034 \,(\mathrm{stat}) \pm 0.0077 \,(\mathrm{syst}) \end{split}$$

Time-dependent angular fit

$$\mathscr{P}(t,\theta_K,\theta_\mu,\phi_h|\delta_t) \propto \sum_{k=1}^{10} N_k h_k(t) f_k(\theta_K,\theta_\mu,\phi_h) \to \phi_s, \Delta m_s, \Delta \Gamma_s, \Gamma_s - \Gamma_d$$

$$\mathcal{P}\left(t, \Omega | \mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}, \delta_{t}\right)$$

$$\propto \sum_{k=1}^{10} \mathcal{C}_{\mathrm{SP}}^{k} N_{k} f_{k}(\Omega) \varepsilon_{\mathrm{data}}^{B_{s}^{0}}(t)$$

$$\cdot \left\{ \left[\mathcal{Q}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | B_{s}^{0}\right) + \bar{\mathcal{Q}}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | \overline{B}_{s}^{0}\right) \right\}$$

Angular amplitudes
C^k_{SP} account for the interference between P- and S- wave
flavor tagging
time-dependent oscillation
decay-time efficiency

$$t - t' | \delta_t \}$$
 decay-time resolution

$$h_k(t|B_s^0) = \frac{3}{4\pi} e^{-\Gamma t} \left(a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} + c_k \cosh(\Delta m t) + d_k \sin(\Delta m t) \right),$$
$$+c_k \cos(\Delta m t) + d_k \sin(\Delta m t) \right),$$
$$h_k(t|\bar{B}_s^0) = \frac{3}{4\pi} e^{-\Gamma t} \left(a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} - c_k \cos(\Delta m t) - d_k \sin(\Delta m t) \right),$$

 a_k, b_k, c_k, d_k involve strong and weak phases (δ, ϕ_s) of each component

k	A_k	$f_k(heta_\mu, heta_K,arphi_h)$
1	$ A_0 ^2$	$2\cos^2 heta_K\sin^2 heta_\mu$
2	$ A_{\ } ^{2}$	$\sin^2 heta_k(1-\sin^2 heta_\mu\cos^2arphi_h)$
3	$ A_{\perp} ^2$	$\sin^2 heta_k(1-\sin^2 heta_\mu\sin^2arphi_h)$
4	$ A_{\parallel}A_{\perp} $	$\sin^2 heta_k \sin^2 heta_\mu \sin 2arphi_h$
5	$ A_0A_{\parallel} $	$\frac{1}{2}\sqrt{2}\sin 2 heta_k\sin 2 heta_\mu\cos arphi_h$
6	$ A_0A_\perp $	$-\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \sin \varphi_h$
7	$ A_{S} ^{2}$	$rac{2}{3}\sin^2 heta_\mu$
8	$ A_S A_{\parallel} $	$\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\cos\varphi_h$
9	$ A_S A_\perp $	$-\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\sin\varphi_h$
10	$ A_S A_0 $	$\frac{4}{3}\sqrt{3}\cos heta_K\sin^2 heta_\mu$

Systematics for ϕ_s

arXiv: 2308.01468 submitted to PRL

* Uncertainties (×0.01)	Dominated sys.
-------------------------	----------------

Sub-dominated sys.

Stat. limited

Source	$ A_0 ^2$	$ A_{+} ^{2}$	ϕ_s	$ \lambda $	$\delta_{\perp} - \delta_0$	$\delta_{\parallel} - \delta_0$	$\Gamma_s - \Gamma_d$	$\Delta \Gamma_s$	Δm_s
	1 01	• •	[rad]		[rad]	[rad]	[ps ⁻¹]	[ps ⁻¹]	[ps ⁻¹]
Mass parametrization	0.04	0.03	0.03	0.02	0.15	0.12	0.02	0.04	0.03
Mass: shape statistical	0.04	0.04	0.05	0.09	0.62	0.33	0.02	0.01	0.11
Mass factorization	0.11	0.10	0.42	0.19	0.54	0.60	0.12	0.16	0.18
B_c^+ contamination	0.04	0.05	_	0.02	_	0.17	(0.07)	(0.03)	—
D–wave component	0.04	0.04	0.02	_	0.07	0.13	0.01	0.03	0.02
Bkgcat 60	0.07	0.04	0.02	0.10	0.18	0.18	0.02	—	0.01
Multiple candidates	0.01	_	0.27	0.22	0.90	0.41	0.01	0.01	0.24
Particle identification	0.06	0.09	0.27	0.27	1.31	0.51	0.05	0.15	0.46
$\mathcal{C}_{ ext{SP}}$ factors	—	0.01	0.01	0.03	0.73	0.41	—	0.01	0.04
DTR model portability	_	_	0.08	0.03	0.26	0.09	_	_	0.09
DTR calibration	_	_	0.03	0.02	0.11	0.07	_	_	0.05
Time bias correction	0.04	0.05	0.06	0.05	0.77	0.11	0.03	0.05	0.44
Angular efficiency	0.05	0.14	0.25	0.32	0.42	0.44	0.01	0.02	0.13
Angular resolution	0.01	0.01	0.02	0.01	0.02	0.08	_	0.01	0.02
Kinematic weighting	0.24	0.09	0.01	0.01	0.98	0.86	0.02	0.03	0.31
Momentum uncertainty	0.08	0.04	0.04	_	0.07	0.11	0.01	—	0.13
Longitudinal scale	0.07	0.04	0.04	_	0.10	0.09	0.02	_	0.31
Neglected correlations	—	_	—	—	4.20	4.96	—	—	—
Total sys. unc.	0.32	0.24	0.6	0.5	4.8	5.2	0.14	0.24	0.9
Stat. unc.	0.17	0.23	2.2	1.1	7.5	6.0	0.14	0.44	3.3

• ϕ_s , $|\lambda|$, $\Delta\Gamma_s$, Δm_s are statistically limited

Systematics for $\phi_s^{s\bar{s}s}$

LHCb-PAPER-2023-001

accepted by PRL

Source	$\phi_s^{s\overline{s}s}$	$ \lambda $	$ A_0 ^2$	$ A_{\perp} ^2$	$\delta_{\parallel}-\delta_{0}$	$\delta_{\perp} - \delta_0$
Time resolution	4.9	2.6	0.8	0.8	0.1	3.4
Flavor tagging	4.8	4.7	0.9	1.3	1.2	9.7
Angular acceptance	3.9	4.9	1.4	1.7	4.7	1.2
Time acceptance	2.3	1.7	0.1	0.1	5.6	0.7
Mass fit & factorization	2.2	4.4	1.9	2.3	2.3	2.5
MC truth match	1.1	0.2	0.1	0.1	0.2	0.3
Fit bias	0.8	0.7	0.9	0.3	3.6	0.7
Candidate multiplicity	0.3	0.2	0.1	0.8	0.2	0.1
Total	8.8	8.6	2.7	3.3	8.5	10.7

Parameter	Result
$\phi_s^{s\overline{s}s}$ [rad]	$-0.042 \pm 0.075 \pm 0.009$
$ \lambda $	$1.004 \pm 0.030 \pm 0.009$
$ A_0 ^2$	$0.384 \pm 0.007 \pm 0.003$
$\left A_{\perp} ight ^2$	$0.310 \pm 0.006 \pm 0.003$
$\delta_{\parallel} - \delta_0 \;\; [{ m rad} \;]$	$2.463 \pm 0.029 \pm 0.009$
$\delta_{\perp} - \delta_0 \; [{ m rad} \;]$	$2.769 \pm 0.105 \pm 0.011$

Decay time & angular efficiencies

• Reconstruction and selection criteria introduce non-uniform efficiency

• Angular efficiencies for B_s^0 decays estimated with simulation

