

CP violation measurements at LHCb

Wenbin Qian (钱文斌) University of Chinese Academy of Sciences (中国科学院大学)

FIND论坛系列学术研讨会 FIND CP Violation at Electroweak Scale and Beyond 26-27 August 2023, Hefei

Outline

- Introduction
- CKM angle measurements
- Other CP violation measurements in b-sector
- CP violation measurements in c-sector
- Conclusions

New Physics

- SM is successful, however, we know there are new physics
- Matter dominated universe

 $\frac{N_B - N_{\overline{B}}}{N_B + N_{\overline{B}}} \sim 10^{-10}$

- SM model gives 10⁻¹⁷, not enough
- Need extra sources of CP violation

CP violation in SM

- **Complex phases in CKM matrix and PMNS matrix**
- **CKM matrix:** unitary matrix connecting interaction and mass eigenstates

Unitary condition, only requirement in SM

$$\begin{pmatrix} d^I \\ s^I \\ b^I \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Interaction eigenstates

2023/08/26

Mass eigenstates

t

- Matrix pattern very different
- **Jarlskog invariant:**

 $J_{exp} \sim 3x10^{-5}$

Related to mass hierarchy? Forth generation?

matrix with maximum CPV

CP violation in SM

- Complex phases in CKM matrix and PMNS matrix
- CKM matrix: unitary matrix connecting interaction and mass eigenstates

- matrix with maximum CPV
- Related to mass hierarchy? Forth generation?

Unitary test

• Closure test of unitary triangle etc

$$\sum_{i} V_{ij}^* V_{ij} = 1 \qquad \sum_{i} V_{ij}^* V_{ik}$$

 10^{-5}

- All measurements consistent with each other? Yes
- Is current precision enough? No

$$V_{ud}V_{ud}^* + V_{us}V_{us}^* + V_{ub}V_{ub}^* - 1$$

 $= -0.00230^{+0.00218}_{-0.00023} (1\sigma)$ $-0.00230^{+0.00237}_{-0.00044} (2\sigma)$ $-0.00230^{+0.00242}_{-0.00065} (3\sigma)$

Direct measurements:

$$\alpha + \beta + \gamma = (179^{+7}_{-6})^{\circ}$$

Global fits:

$$\alpha + \beta + \gamma = (179.9^{+1.9}_{-1.7})^{\circ}$$

= 0

Energy scale

• Sensitive to New Physics scale much higher than direct search: 1-10⁴ TeV

$$\mathcal{A}(\psi_i \to \psi_j + X) = \mathcal{A}_0 \left(\underbrace{\frac{c_{\text{SM}}}{v^2}}_{\text{Energy scale for SM: } v \sim 100 \text{ GeV}} \text{NP scale: } \Lambda$$
Flavor (quark)
LHC
Tevatron
$$\log(\underbrace{\frac{\text{Energy}}{\text{GeV}}}_{2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7})$$

- Statistics or precision is key for flavor program: New Physics scale, i.e., Dim =
 6, proportional to ⁴√statistics or 1/√Uncertainty
- Also "tasteful", not only can tell there is New Physics, but also tell properties of New Physics based on flavor it couples to
- LHCb plays a key role in flavor and CP programs

LHCb

2021/11/11

A glance of LHCb contribution

From S. Descotes-Genon

- |V_{cs}|, |V_{cd}|: (semi-)leptonic charm decays
 (can be done and should be done, but
 none has done anything yet)
- $|V_{ub}|$, $|V_{cb}|$: (semi-)leptonic *B* decays
- $|V_{td}|, |V_{ts}|: \Delta m_d, \Delta m_s$

- $\beta: B \to (\overline{c}c)K, B \to Dh^0$, time-dependent CP violation
- $\gamma: B \rightarrow DK$, ADS/GLW/GGSZ
- $\phi_s: B_s^0 \to (c\bar{c})(KK, \pi\pi)$, time-dependent CP violation

$$-2\beta_s + \gamma: B_s \to D_s K$$

Measurements of Δm_q

• Measured using $B_S^0 \to D_S^- \pi^+$, $B^0 \to D^{(*)} \mu \nu X$

$$\Delta m_d = 0.5065(19) \text{ps}^{-1}$$

 $\Delta m_s = 17.7656(57) \text{ps}^{-1}$

Precision of 0.38% and 0.03%!!!

$$\Delta m_{q} = \frac{G_{F}^{2}}{6\pi^{2}} \left| V_{tq}^{*} V_{tb} \right|^{2} M_{W}^{2} S_{0}(x_{t}) B_{q} f_{Bq}^{2} M_{Bq} \widehat{\eta}_{B}^{2}, \quad x_{t} = \frac{m_{t}^{2}}{M_{W}^{2}}$$
$$S_{0}(x) = x \left[\frac{1}{4} + \frac{9}{4} \frac{1}{1-x} - \frac{3}{2} \frac{1}{(1-x)^{2}} \right] - \frac{3}{2} \left[\frac{x}{1-x} \right]^{3} \ln x$$

- Uncertainties mainly from Bag parameters (3%) obtained from lattice
- Large reduction of uncertainties by making ratios of the two

Contribution of Δm_q to CKM fit

Types of CP violation

Direct CP violation •

$$\left|A_{f}\right| = \left|< f|H|P>\right| \neq \left|\bar{A}_{\bar{f}}\right| = \left|<\bar{f}|H|\bar{P}>\right|$$

Neutral meson mixing •

$$B_{L} = p|B_{q}\rangle + q|B_{q}\rangle$$
$$B_{H} = p|B_{q}\rangle - q|\overline{B}_{q}\rangle$$
$$\Delta m_{q} = m_{H} - m_{L}, \ \Delta \Gamma_{q} = \Gamma_{L} - \Gamma_{H}$$

 $I = \lambda$

CP violation in mixing ullet

 $\left|\frac{q}{p}\right|! = 1$

CP violation in mixing and decay •

 $\arg(\lambda_f) + \arg(\lambda_{\bar{f}}) \neq 0$,

with
$$\lambda_f$$

 $\equiv \frac{q}{p} \frac{A_f}{A_f} \; .$

CKM angle γ

- Tree level processes → SM candle, NP normally enters loop diagrams
- Loop level processes suppressed, theoretically clean, $\delta\gamma/\gamma \sim 10^{-7}$
- All QCD parameters (hard to calculate) obtained from experimental measurements (global fit)

2022/10/08

Probe γ in different methods

Global combination

LHCb-CONF-2022-003

		1001.	Decay	Parameters	Source
$B^{\pm} \rightarrow Dh^{\pm}$ $B^{\pm} \rightarrow Dh^{\pm}$ $B^{\pm} \rightarrow Dh^{\pm}$ $B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^{+}h^{-}$ $D \rightarrow h^{+}\pi^{-}\pi^{+}\pi^{-}$ $D \rightarrow K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ $D \rightarrow h^{+}h^{-}\pi^{0}$	[29] [30] [18] [19]	$B^{\pm} \to DK^{*\pm}$ $B^{0} \to DK^{*0}$ $B^{0} \to D^{\mp}\pi^{\pm}$ $D^{0} \to D^{\mp}\pi^{\pm}$	$\kappa_{B^\pm}^{DK^{st\pm}}$ $\kappa_{B^0}^{DK^{st0}}$ eta	LHCb LHCb HFLAV
$\begin{array}{l} B^{\pm} \rightarrow Dh^{\pm} \\ B^{\pm} \rightarrow Dh^{\pm} \\ B^{\pm} \rightarrow D^{*}h^{\pm} \\ B^{\pm} \rightarrow D^{*}h^{\pm} \end{array}$	$D ightarrow K^0_S h^+ h^-$ $D ightarrow K^0_S K^\pm \pi^\mp$ $D ightarrow h^+ h^-$	[31] [32] [29]	$B_s^0 \to D_s^+ K^{\pm}(\pi\pi)$ $D \to K^+ \pi^-$ $D \to K^+ \pi^-$ $D \to h^+ h^- \pi^0$	$\phi_s \ \cos \delta_D^{K\pi}, \sin \delta_D^{K\pi}, (r_D^{K\pi})^2, x^2, y \ A_{K\pi}, A_{K\pi}^{\pi\pi\pi^0}, r_D^{K\pi} \cos \delta_D^{K\pi}, r_D^{K\pi} \sin \delta_D^{K\pi} \ F^+ \ o, F^+_{KK} \ o$	HFLAV CLEO-c BESIII CLEO-c
$B^{\pm} \rightarrow DK^{*\pm}$ $B^{\pm} \rightarrow DK^{*\pm}$ $B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$ $B^{0} \rightarrow DK^{*0}$	$egin{array}{ll} D ightarrow h^+h^- \ D ightarrow h^+\pi^-\pi^+\pi^- \ D ightarrow h^+h^- \ D ightarrow h^+h^- \end{array}$	[33] [33] [34] [35]	$D \to \pi^+ \pi^- \pi^+ \pi^-$ $D \to K^+ \pi^- \pi^0$ $D \to K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$F_{4\pi}^+$ $r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$ $r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}$ $\kappa_D^{9K\pi}, \kappa_D^{9K\pi}$	CLEO-c+BESIII CLEO-c+LHCb+BESIII CLEO-c+LHCb+BESIII
$B^{0} \rightarrow DK^{*0}$ $B^{0} \rightarrow DK^{*0}$ $B^{0} \rightarrow D^{\mp}\pi^{\pm}$ $B^{0}_{s} \rightarrow D^{\mp}_{s}K^{\pm}$ $B^{0}_{s} \rightarrow D^{\mp}_{s}K^{\pm}$	$D \rightarrow h^{+}\pi^{-}\pi^{+}\pi^{-}$ $D \rightarrow K_{\rm S}^{0}\pi^{+}\pi^{-}$ $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$ $D_{s}^{+} \rightarrow h^{+}h^{-}\pi^{+}$ $D_{s}^{+} \rightarrow h^{+}h^{-}\pi^{+}$	35] [36] [37] [38]	$D \to K_{\rm S}^{0}K^{\pm}\pi^{\mp}$ $D \to K_{\rm S}^{0}K^{\pm}\pi^{\mp}$ C $D \text{ decay}$	$\frac{r_D^{\circ}, o_D^{\circ}, \kappa_D^{\circ}}{r_D^{\kappa_S^{\circ}\kappa_\pi}}, \frac{\kappa_D^{\circ}}{r_D^{\circ}}$ harm (and b) inputs Observable(s) Ref	LHCb

Measurements from b-decays

Now can also constrain D parameters

$D^0 ightarrow h^+ h^-$	ΔA_{CP}	[24, 40, 41]
$D^0 \to K^+ K^-$	$A_{CP}(K^+K^-)$	[16, 24, 25]
$D^0 ightarrow h^+ h^-$	$y_{C\!P}-y_{C\!P}^{K^-\pi^+}$	[42]
$D^0 ightarrow h^+ h^-$	$y_{C\!P}-y_{C\!P}^{K^-\pi^+}$	[15]
$D^0 ightarrow h^+ h^-$	ΔY	[43-46]
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	[47]
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	[48]
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[49]
$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	x, y	[50]
$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[51]
$D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[52]
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- \ (\mu^- \ {\rm tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[17]

Global combination results

- Compatible with indirect determination $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}_{\text{CKMfitter}}$
 - Dominant by **B**⁺ decays
 - Different decays contribute differently, global combination gives best sensitivity

CKM angle γ : results

- Binned method (BPGGSZ) for $B^+ \to D^*K^+$, $D^* \to D\pi^0$, $D\gamma$, $D \to K^0_S h^+ h^-$
- Uncertainties from BaBar and Belle around 26°
- First measurements from LHCb, using fully reconstructed method

 $\gamma = 69 \pm 14$ $^\circ$

Results consistent with previous measurements, but more precise

CPV in three-body charmless B decays PRL 112 (2014) 011081 PRL 111 (2013) 101801 PRD 90 (2014) 112004

- Interesting CPV pattern seen on Dalitz plot of $B^+ \rightarrow h^+ h^- h'^+$, $h^{(\prime)} = K, \pi$
- Dalitz plot analysis needed to shed more light on understanding nature of these CPV

Now, amplitude analyses of B⁺ → π⁺π⁻π⁺ and B⁺ → K⁺K⁻π⁺, with much larger statistics than previous B-factory analyses, has been performed

• CP violation around $\rho(770)$ pole well described by the three S-wave models

- Over 25σ significance for CPV due to S-P interference, first observation
- CP violation sign flips around $\rho(770)$ pole and over helicity angle
- Crucial object next: any new physics inside?

LHCb-PAPER-2023-013

CKM angle β

$S_{\psi K_{\rm S}^0}^{\rm Run \ 2}$	$= 0.716 \pm 0.013 (\text{stat}) \pm 0.008 (\text{syst})$
$C_{\psi K_{\rm S}^0}^{\rm Run \ 2}$	$= 0.012 \pm 0.012 (\text{stat}) \pm 0.003 (\text{syst})$

See talk from Peilian

• Using predictions with CKM parameters, probe new physics in sensitive decays

CKM angle $\phi_s^{s\bar{s}s}$

• Very sensitive to new physics in B_s mixing and in penguin

 $\phi_s^{s\overline{s}s} \sim 0$ (SM)

See talk from Peilian

CKM angle $\phi_s^{s\bar{s}s}$

- Very sensitive to new physics in B_s mixing and in penguin
- Time-dependent angular analysis to probe CP violation: distinguish flavor, resonant contributions

Mixing angle:

 $\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rad},$

Direct CP violation parameter:

 $|\lambda| = 1.004 \pm 0.030 \pm 0.009 \,,$

CP violation in weak decays

LHCb-PAPER-2019-006

First evidence of CPV in $D^0 \rightarrow \pi^+\pi^-$

LHCb-PAPER-2022-024

• Previous CP violation discovery in charmed mesons:

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$$

• Now we measure

$$A_{CP}(K^+K^-) = (6.8 \pm 5.4 \pm 1.6) \times 10^{-4}$$

• Interpretation:

$$A_{CP}(f) = a_f^d + \frac{\langle t \rangle_f}{\tau_D} \Delta Y_f$$

• Direct CP violation:

2023/08/26

$$a^{d}_{K^-K^+} = (7.7 \pm 5.7) \times 10^{-4},$$

 $a^{d}_{\pi^-\pi^+} = (23.2 \pm 6.1) \times 10^{-4},$
 3.8σ

Related to CPV in mixing and decay

Determined by LHCb

Discovery of a non-zero *x*

- Mixing parameters: $x = (3.7 \pm 1.2) \times 10^{-3}$, $y = (6.8^{+0.6}_{-0.7}) \times 10^{-3}$
- CP violation in mixing: $\left|\frac{q}{n}\right| \neq 1$
- CPV in mixing and decay: $\phi \neq 0$ (assume no direct CPV)

$$\begin{aligned} x_{CP} &= -\operatorname{Im}\left(z_{CP}\right) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right], \\ \Delta x &= -\operatorname{Im}\left(\Delta z\right) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right], \\ y_{CP} &= -\operatorname{Re}\left(z_{CP}\right) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right], \\ \Delta y &= -\operatorname{Re}\left(\Delta z\right) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]. \end{aligned}$$

 $R_{bj}^{\pm} \approx \frac{r_b + \frac{1}{4} r_b \langle t^2 \rangle_j \operatorname{Re} \left(z_{CP}^2 - \Delta z^2 \right) + \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re} \left[X_b^* (z_{CP} \pm \Delta z) \right]}{1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re} \left(z_{CP}^2 - \Delta z^2 \right) + r_b \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re} \left[X_b (z_{CP} \pm \Delta z) \right]},$ $\approx \overline{\frac{1}{1 + \frac{1}{4} \langle t^2 \rangle_j}} \operatorname{Re} \left(z_{CP}^2 - \Delta z^2 \right) + r_b \overline{4} \langle t^2 \rangle_j | z_{CP} + \cdots$ $x_{CP} = -\operatorname{Im} \left(z_{CP} \right), \quad \Delta x = -\operatorname{Im} \left(\Delta z \right), \quad X_b \equiv c_b - is_b, \quad \sum_{\substack{n=1\\ n \neq n}}^{4} \sum_{\substack{n=1\\ n \neq n}}^{4$

Measured using prompt $D^{*+} \rightarrow D^0 \pi^+$, D^0

$$\rightarrow K_S^0 \pi^+ \pi^-$$
 and secondary $\overline{B} \rightarrow D^0 \mu^- \overline{\nu_\mu} X$

,

,

• Results and constrain on CP violation parameters

$$\begin{split} x_{CP} &= \begin{bmatrix} 4.01 \pm 0.45 \,(\text{stat}) \pm 0.20 \,(\text{syst}) \end{bmatrix} \times 10^{-3} \,, & x = (4.01 \pm 0.49) \times 10^{-3} \\ y_{CP} &= \begin{bmatrix} 5.51 \pm 1.16 \,(\text{stat}) \pm 0.59 \,(\text{syst}) \end{bmatrix} \times 10^{-3} \,, & y = (5.5 \pm 1.3) \times 10^{-3} \\ \Delta x &= \begin{bmatrix} -0.29 \pm 0.18 \,(\text{stat}) \pm 0.01 \,(\text{syst}) \end{bmatrix} \times 10^{-3} \,, & |q/p| = 1.012 \substack{+0.050 \\ -0.048} \,, \\ \Delta y &= \begin{bmatrix} 0.31 \pm 0.35 \,(\text{stat}) \pm 0.13 \,(\text{syst}) \end{bmatrix} \times 10^{-3} \,. & \phi = -0.061 \substack{+0.037 \\ -0.044} \,\text{rad.} \end{split}$$

• Significant improvement on our understanding of D mixing and CPV

Future data taking plans

Physics potential

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	
$R_{K^*} \ (1 < q^2 < 6 { m GeV}^2 c^4)$	$0.1 \ 275$	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}		0.08,0.06,0.18	-	0.02,0.02,0.05	-
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	-	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm s}^0$	0.04 609	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 o J/\psi \phi$	49 mrad 44	$14 \mathrm{mrad}$	-	4 mrad	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad 49	$35 \mathrm{\ mrad}$	_	$9 \mathrm{mrad}$	
$\phi^{s\bar{s}s}_{s}$, with $B^{0}_{s} ightarrow \phi \phi$	154 mrad [94]	39 mrad	_	$11 \mathrm{mrad}$	Under study [611]
$a_{ m sl}^s$	33×10^{-4} [211]	$10 imes 10^{-4}$	-	$3 imes 10^{-4}$	_
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_	10%	21% [612]
$\tau_{B^0 \rightarrow \mu^+ \mu^-}$	22% 264	8%	-	2%	
$\tilde{S_{\mu\mu}}^{s}$	_	_	_	0.2	_
$b \to c \ell^- \bar{\nu_l} \operatorname{LUV} \operatorname{studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 220	0.071	-	0.02	-
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	3.0×10^{-5}	_
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} 240	$4.3 imes 10^{-5}$	$3.5 imes 10^{-4}$	$1.0 imes 10^{-5}$	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	$3.2 imes 10^{-4}$	$4.6 imes 10^{-4}$	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{ m s}^0\pi\pi)$ $1.2 imes 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	-

• Great experimental potential ahead, need lattice to accompany

CKM fit in a near future

- With assumptions on improvements on lattice (mostly factor of 2)
- Central values at current fit values

Summary: CKM status over years

2001

1995

Δm

Δm, & Δm,

2023/08/26

1.5

1.0

0.5

-0.5

-1.0

-1.5 -1.0

5 0.0

..........

sin 20

a

СКМ

-0.5

0.0

0.5

 $\overline{\rho}$

2006

1.0

1.5

2.0

excluded area has CL > 0.95

Y

Summary: Future of CKM

Thank You for Your Attention

CP violation in $B \rightarrow PV$

