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STATUS OF SM HIGGS SEARCH

1 Introduction

The discovery of the Higgs boson (H) [1, 2] at the Large Hadron Collider (LHC) [3] in 2012 has
experimentally confirmed the Brout–Englert–Higgs (BEH) mechanism of electroweak symmetry breaking
and mass generation [4–6]. The BEH mechanism not only predicts the existence of a massive scalar particle,
but also requires this scalar particle to couple to itself. Therefore, observing the production of Higgs
boson pairs (HH) and measuring the Higgs boson self-coupling �HHH is a crucial validation of the BEH
mechanism. Any deviation from the Standard Model (SM) predictions would open a window to new physics.
Moreover, the form of the Higgs field potential, which generates the Higgs boson self-coupling after
electroweak symmetry breaking, can have important cosmological implications, involving, for example,
predictions for vacuum stability or models in which the Higgs boson acts as the inflation field [7–10].

In the SM, the gluon–gluon fusion pp ! HH process (ggF) accounts for more than 90% of the Higgs
boson pair production cross-section, and only this production mode is considered here. It proceeds via
two amplitudes: the first (A1) represented by the diagrams (a) and (b), and the second (A2) represented
by the diagram (c) in Figure 1. The interference between these two amplitudes is destructive and yields
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Figure 1: Examples of leading-order Feynman diagrams for Higgs boson pair production: the diagrams (a) and
(b) are proportional to the square of the heavy-quark Yukawa couplings, while the diagram (c) is proportional to
the product of the heavy-quark Yukawa coupling and the Higgs boson self-coupling. Here � is the ratio of the
beyond-the-Standard-Model Higgs boson self-coupling to that of the SM. The diagram (d) represents the production
of the Higgs boson pair through an intermediate resonance (X) that couples to gluons through an e�ective coupling
and to the SM Higgs boson.

an overall cross-section of �SM
ggF(pp ! HH) = 33.5+2.4

�2.8 fb at
p

s = 13 TeV [11], calculated first at
next-to-leading order (NLO) in QCD with the heavy top-quark approximation [12], then numerically with
full top-quark mass dependence [13] (confirmed later in Ref. [14] and analytically computed with some
approximation in Ref. [15]) corrected at next-to-next-to-leading order (NNLO) [16] in QCD matched
with next-to-next-to-leading logarithmic (NNLL) resummation in the heavy top-quark limit [17, 18]. The
Higgs boson mass used in these calculations and for all results in this paper is mH = 125.09 GeV [19].
Beyond-the-Standard-Model (BSM) scenarios can bring substantial enhancement of this cross-section by
modifying the relative sign of A1 and A2, and by increasing A2. The A2 amplitude is proportional to
the Higgs self-coupling �HHH . The Higgs boson self-coupling modifier due to BSM scenarios is defined
as � = �HHH/�SM

HHH
. In this analysis, all other Higgs boson couplings are assumed to have SM values.
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Figure 2: Upper limits at 95% CL on the cross-section of the ggF SM HH production normalised to its SM
expectation �SM

ggF(pp ! HH) from the bb̄⌧+⌧�, bb̄bb̄, bb̄��, W
+
W

�
W
+
W

�, W
+
W

��� and bb̄W
+
W

� searches, and
their statistical combination. The column “Obs.” lists the observed limits, “Exp.” the expected limits with all
statistical and systematic uncertainties, and “Exp. stat.” the expected limits obtained including only statistical
uncertainties in the fit.

the ⌧-lepton reconstruction and identification. When removed the limit reduces by 5%, 3% and 2%,
respectively.

5 Constraints on the Higgs boson self-coupling

The results in Figure 2 show that the sensitivity of the SM HH search is driven by the final states bb̄bb̄,
bb̄⌧+⌧� and bb̄��. These final states are used to set constraints on the Higgs boson self-coupling modifier
� = �HHH/�SM

HHH
. After setting all couplings to fermions and bosons to their SM values, a scan of the

self-coupling modifier � is performed. The � factor a�ects both the production cross-section and the
kinematic distributions of the Higgs boson pairs, by modifying the A2 production amplitude. It can also
a�ect the Higgs boson branching fractions due to NLO electroweak corrections [20], but this dependence
is neglected in the following.

The signal used in the � fit was simulated according to the following procedure. For each value
of � the mHH spectrum is computed at the generator-level, using the leading-order (LO) version of
M��G����5_�MC@NLO [59] with the NNPDF 2.3 LO [65] PDF set, together with P����� 8.2 [66] for
the showering model using the A14 tune [67]. Because only one amplitude of Higgs boson pair production
depends on �, linear combinations of three LO samples generated with di�erent values of � are su�cient
to make predictions for any value of �. Binned ratios of the mHH distributions to the SM distribution are
computed for all � values and then used to reweight the events of NLO SM HH signal samples, generated
using the full detector simulation. This procedure is validated by comparing kinematic distributions
obtained with the reweighting procedure applied to the LO SM sample and LO samples generated with the
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• SM Higgs self-interaction:



EXTRA NEUTRAL HIGGS SEARCH
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Figure 9: Expected and observed upper limit at 95% CL on the cross section of resonant pair production for
the resolved analysis in the heavy scalar boson S model (left) and the spin-2 graviton model in two c parameter
hypotheses (right). The left plot also shows the expected limit without including the systematic errors in order to
show their impact. The impact of systematic errors is similar for the graviton models.
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EXTRA CHARGED HIGGS SEARCH
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QUESTIONS AND POSSIBILITIES

In the SM, generically, decoupling effect goes like:

𝒪
𝑣!

𝑀new
! ∼ 5%×

1TeV
Λ

!

For O(15%) accuracy in HVV couplings, 𝑀new >∼ 600GeV !

Question:

If we continue to pursue the precision in the Higgs coupling measurements, is there any value in 
direct searches for additional, heavy Higgs bosons? 

Yes! It goes by the name of “Alignment without decoupling.” 



TWO HIGGS DOUBLET MODEL

• To see how “alignment without decoupling” arises by CP even Higgs couplings:

𝑔"!## =
1
2𝑔

!𝑣$ , 𝑖 = 1,2

• It is possible to rotate to Higgs basissuch that the scalar potential now reads

V = Y1H
†
1H1 + Y2H

†
2H2 +

h
Y3e

�i⌘
H

†
1H2 + h.c.

i

+
Z1

2
(H†

1H1)
2 +

Z2

2
(H†

2H2)
2 + Z3(H

†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+


Z5

2
e
�2i⌘(H†

1H2)
2 + Z6e

�i⌘(H†
1H1)(H

†
1H2) + Z7e

�i⌘(H†
2H2)(H

†
1H2) + h.c.

�
. (12)

In Eq. (12) every parameter is invariant when transforming between Higgs bases under

Eq. (8). The U(2) redundancy is now completely fixed, as di↵erent choices of parameters in

the scalar potential truly represent physically distinct theories.

The minimziation of scalar potential gives the following conditions

Y1 = �1

2
Z1 v

2
, Y3 = �1

2
Z6 v

2
. (13)

In particular, the relation between Y3 and Z6 implies there are only three independent

complex parameters, in general, usually taken to be {Z5, Z6, Z7}. However, only two out of

the three phases are physical as one phase can be removed by choosing a particular value of

the Higgs basis label ⌘. Furthermore, the vacuum and the bosonic sector of the 2HDM is

CP-invariant if one can find a choice of ⌘ such that all parameters in Eq. (12) are real after

imposing the minimzation condition. This can happen if and only if [7]

Im(Z⇤
5Z

2
6) = Im(Z⇤

5Z
2
7) = Im(Z⇤

6Z7) = 0 . (14)

Otherwise, CP invariance is broken.

While the U(2) rotation in Eq. (4) leaves the scalar kinetic term invariant, it does modify

the Higgs-fermion Yukawa interactions. In most phenomenological studies the U(2) redun-

dancy is fixed by choosing a particular basis where the Yukawa interactions are specified. The

Higgs-fermion interactions result in tree-level flavor-changing neutral currents (FCNCs), in

severe conflict with experimental observations. One simple possibility is to impose a discrete

Z2 symmetry [8–10],

�1 ! �1 , �2 ! ��2 , (15)

which in Eq. (1) lead to

m
2
12 = �6 = �7 = 0 . (16)

Note that the Z2 symmetry is incompatible with the U(2) rotation in Eq. (4), which mixes

fields with opposite Z2 charges. That is, if the Z2 symmetry were exact, the U(2) rotation

would be forbidden.
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𝐻!'
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𝑣

“alignment without decoupling” [2–4] is the Higgs basis [5], which is defined by two doublet

fields ~H = (H1, H2)T having the following property

hH0
1 i =

vp
2
, hH0

2 i = 0 . (5)

The U(2) rotation that brings a general �-basis to the Higgs basis is given by

~H = U⌘
~� , U⌘ =

0

@ cos � e
�i⇠ sin �

�e
i(⇠+⌘) sin � e

i⌘ cos �

1

A , (6)

where ⇠ and � are the �-basis parameters defined in Eqs. (2) and (3), respectively, while

e
i⌘ = detU⌘ is an arbitrary phase parameterizing the residual U(1) redundancy in the Higgs

basis. More specifically, the basis

~H
0 = U⌘0

~� (7)

is an equivalent Higgs basis related to the previous one by

H
0
1 = H1 , H

0
2 = e

i(⌘0�⌘)
H2 , (8)

which leaves the defining relation, Eq. (5), invariant. In other words, the Higgs basis is

a family of bases labelled by ⌘.1 Transformations between two Higgs bases are given by

Eq. (8), where (H1, H2) is labelled by ⌘ and (H 0
1, H

0
2) by ⌘

0.

In the (H1, H2) basis the scalar potential is written as

V = Y1H
†
1H1 + Y2H

†
2H2 +

h
Ỹ3H

†
1H2 + h.c.

i

+
Z1

2
(H†

1H1)
2 +

Z2

2
(H†

2H2)
2 + Z3(H

†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)
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"
Z̃5

2
(H†

1H2)
2 + Z̃6(H

†
1H1)(H

†
1H2) + Z̃7(H

†
2H2)(H

†
1H2) + h.c.

#
. (9)

Under Eq. (8), parameters in Eq. (9) are invariant except for the following,

[Ỹ3, Z̃6, Z̃7] ! e
�i(⌘0�⌘)[Ỹ3, Z̃6, Z̃7] , Z̃5 ! e

�2i(⌘0�⌘)
Z̃5 . (10)

This motivates defining the following invariant quantities

[Ỹ3, Z̃6, Z̃7] ⌘ e
�i⌘[Y3, Z6, Z7] , Z̃5 ⌘ e

�2i⌘
Z5 , (11)

1 Our definition of (H1, H2) in Eq. (6) coincides with the the invariant fields (H1,H2) defined in Ref. [6].
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TWO HIGGS DOUBLET MODEL

§ “Alignment without decoupling” occurs when Higgs basis = Mass eigen basis

• Mass matrix:

III. ALIGNMENT WITHOUT DECOUPLING IN C2HDM

The alignment limit is defined by the limit where the scalar carrying the full vev in Higgs

basis is aligned with the 125 GeV mass eigenstate [2–4]. In this case the 125 GeV mass

eigenstate couples to the electroweak gauge bosons with the SM strength, consistent with

the experimental observation.

Our goal is to work out the physical couplings in the neutral scalar sector, in the presence

of CP-violation, assuming approximate alignment limit. We start by parameterizing the

Higgs basis doublets as follows,

H1 =

0

@ G
+

1p
2
(v + �

0
1 + iG

0)

1

A , H2 =

0

@ H
+

1p
2
(�0

2 + ia
0)

1

A , (22)

where G
+ and G0 are the Goldstone bosons. The neutral fields are �

0
1, �

0
2 and a

0, and the

charged field is H
+. The mass-squared matrix in �

0
1 � �

0
2 � a

0 basis is obtained from the

potential in Eq. (12),

M2 = v
2

0

BBB@

Z1 Re (Z6e
�i⌘) �Im (Z6e

�i⌘)

Re (Z6e
�i⌘) 1
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v2
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1
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. (23)

We always can be redefine Z5, Z6 and Z7, making the mass matrix be

M2 = v
2

0

BBB@

Z1 Re (Z6) �Im (Z6)

Re (Z6)
1
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1
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. (24)

Just need to remember when we define this matrix, we already assume the a0 is CP old.

The mass matrix can be diagonalized by a special real orthogonal transformation

RM2
R

T = M2
D
⌘ diag (m2

1,m
2
2,m

2
3) , (25)

where R is a special orthogonal 3 ⇥ 3 matrix relating (�0
1,�

0
2, a

0) to the mass eigenstates

(h1, h2, h3), 0
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1
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= R

0

BBB@

�
0
1

�
0
2

a
0

1

CCCA
. (26)
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• Higgs –V-V couplings:



CP VIOLATION THDM

• Counting the number of d.o.f. in CPX 2HDMsuch that the scalar potential now reads
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In Eq. (12) every parameter is invariant when transforming between Higgs bases under

Eq. (8). The U(2) redundancy is now completely fixed, as di↵erent choices of parameters in

the scalar potential truly represent physically distinct theories.

The minimziation of scalar potential gives the following conditions
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Z1 v

2
, Y3 = �1
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Z6 v

2
. (13)

In particular, the relation between Y3 and Z6 implies there are only three independent

complex parameters, in general, usually taken to be {Z5, Z6, Z7}. However, only two out of

the three phases are physical as one phase can be removed by choosing a particular value of

the Higgs basis label ⌘. Furthermore, the vacuum and the bosonic sector of the 2HDM is

CP-invariant if one can find a choice of ⌘ such that all parameters in Eq. (12) are real after

imposing the minimzation condition. This can happen if and only if [7]
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Otherwise, CP invariance is broken.

While the U(2) rotation in Eq. (4) leaves the scalar kinetic term invariant, it does modify

the Higgs-fermion Yukawa interactions. In most phenomenological studies the U(2) redun-

dancy is fixed by choosing a particular basis where the Yukawa interactions are specified. The

Higgs-fermion interactions result in tree-level flavor-changing neutral currents (FCNCs), in

severe conflict with experimental observations. One simple possibility is to impose a discrete

Z2 symmetry [8–10],

�1 ! �1 , �2 ! ��2 , (15)

which in Eq. (1) lead to

m
2
12 = �6 = �7 = 0 . (16)

Note that the Z2 symmetry is incompatible with the U(2) rotation in Eq. (4), which mixes

fields with opposite Z2 charges. That is, if the Z2 symmetry were exact, the U(2) rotation

would be forbidden.
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• Minimization condition in the Higgs basis:

𝑌% = −
1
2𝑍%𝑣

! 𝑌( = −
1
2𝑍)𝑣

!

• Free parameters:
D𝑌!, 𝑍%, 𝑍!, 𝑍(, }𝑍* ⇒ D𝑌!, 𝑍%, 𝑍(, }𝑍*

D𝑍+, 𝑍), }𝑍, ⇒ D𝑍+, 𝑍), }Re[𝑍,]

• 𝑍# Symmetry:

§ 9 real free parameters!

Since 0 ≤ β ≤ 1
2π, it follows that

s2β =
2|Z67|√

(Z2 − Z1)2 + 4|Z67|2
, c2β =

±(Z2 − Z1)√
(Z2 − Z1)2 + 4|Z67|2

, (82)

In particular,

tan β =

√
1− c2β
1 + c2β

, (83)

which demonstrates that tan β in the Φ-basis corresponds to cot β in the Φ′-basis. Moreover,

ei(ξ+θ23) = ±ei(θ23−θ67) = ±
|Z67|

Z67e−iθ23
=

(
Z2 − Z1

2Z67e−iθ23

)
s2β
c2β

. (84)

Note that eq. (84) is consistent with the result of eq. (75).

Plugging the results of eq. (82) back into eq. (80),
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where D ≡
√

(Z2 − Z1)2 + 4|Z67|2. We can use eq. (77) to write e−iθ67 = Z∗
67/|Z67|. It then
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Taking the real and imaginary parts of eq. (86) and massaging the real part yields
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It is convenient to multiply eq. (88) by −i and add the result to eq. (87). This yields a
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The cases where Z1 = Z2 and/or Z67 = 0 are easily treated. First, if Z1 = Z2 and Z67 $= 0,

then eqs. (79) and (80) imply that s2β = 1 and c2β = 0, and it follows that Im(Z∗
5Z

2
67) = 0
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FREE PARAMETERS IN CTHDM

2

There is a residual U(1) redundancy in the Higgs basis,
labelled by H2 ! e
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H2, which leaves Eq. (3) invariant

and motivates writing the scalar potential as [36]
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In the above, di↵erent choices of parameters truly rep-
resent physically distinct theories [36]. The potentially
complex parameters are {Y3, Z5, Z6, Z7}.

The minimization of the scalar potential gives Y1 =
�Z1/2v2 and Y3 = �Z6v

2
/2. The first relation can be

viewed as the definition of v in the Higgs basis, while the
second relation implies there are only three independent
complex parameters, usually taken to be {Z5, Z6, Z7}. If
one can find a choice of ⌘ such that all parameters in
Eq. (4) are real after imposing the minimization condi-
tion, the vacuum and the bosonic sector of the 2HDM is
CP-invariant. This can happen if and only if [37]
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Otherwise, CP invariance is broken.
In a 2HDM the most general Higgs-fermion interac-

tions result in tree-level flavor-changing neutral currents
(FCNCs), in severe conflict with data. One simple pos-
sibility is to impose a discrete Z2 symmetry [38–40],
�1 ! �1 and �2 ! ��2, which can be broken softly
by mass terms, leading to �6 = �7 = 0 in Eq. (1).

In the Higgs basis, the existence of a softly broken Z2

symmetry is guaranteed through the condition [36, 41],
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Eq. (6) assumes Z6+Z7 6= 0 and Z1 6= Z2, and eliminates
two real degrees of freedom. In the end there are a total
of 9 real parameters in a complex 2HDM.
The Alignment Limit – The alignment limit [21] is
defined by the limit where the scalar carrying the full
VEV in the Higgs basis is aligned with the 125 GeV mass
eigenstate [22–24], in which case the observed Higgs bo-
son couples to the electroweak gauge bosons with SM
strength. We will parameterize the Higgs basis dou-
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Here we have used the notation cij = cos ✓ij , sij = sin ✓ij ,
c̄23 = cos ✓̄23 and s̄23 = sin ✓̄23 . An important observa-
tion is that ✓̄23 [42] rotates between �
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0, which cor-
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i✓̄23H2. Therefore
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✓23 will be important when discussing CP-conservation.

Recall �0
1 carries the full SM VEV and exact alignment

is when �
0
1 coincides with a mass eigenstate. We choose

to align �
0
1 with h1, which can be achieved by setting

c13 = 0 and ✓13 = ⇡/2 in Eq. (9). We also impose the
ordering, mh1  mh2  mh3 so that mh1 = 125 GeV.
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�1 ! �1 and �2 ! ��2, which can be broken softly
by mass terms, leading to �6 = �7 = 0 in Eq. (1).

In the Higgs basis, the existence of a softly broken Z2

symmetry is guaranteed through the condition [36, 41],
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Eq. (6) assumes Z6+Z7 6= 0 and Z1 6= Z2, and eliminates
two real degrees of freedom. In the end there are a total
of 9 real parameters in a complex 2HDM.
The Alignment Limit – The alignment limit [21] is
defined by the limit where the scalar carrying the full
VEV in the Higgs basis is aligned with the 125 GeV mass
eigenstate [22–24], in which case the observed Higgs bo-
son couples to the electroweak gauge bosons with SM
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✓23 will be important when discussing CP-conservation.

Recall �0
1 carries the full SM VEV and exact alignment

is when �
0
1 coincides with a mass eigenstate. We choose

to align �
0
1 with h1, which can be achieved by setting

c13 = 0 and ✓13 = ⇡/2 in Eq. (9). We also impose the
ordering, mh1  mh2  mh3 so that mh1 = 125 GeV.
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Choosing {v,mh1 ,mh2 ,mh3 ,mH± , ✓12, ✓13, Z3,Re[Z̃7]}
as our 9 input parameters, all other parameters and
couplings can be expressed accordingly. Some important
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• Alignment Limit:
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Eq. (6) assumes Z6+Z7 6= 0 and Z1 6= Z2, and eliminates
two real degrees of freedom. In the end there are a total
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The Alignment Limit – The alignment limit [21] is
defined by the limit where the scalar carrying the full
VEV in the Higgs basis is aligned with the 125 GeV mass
eigenstate [22–24], in which case the observed Higgs bo-
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Here we have used the notation cij = cos ✓ij , sij = sin ✓ij ,
c̄23 = cos ✓̄23 and s̄23 = sin ✓̄23 . An important observa-
tion is that ✓̄23 [42] rotates between �
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2 and a

0, which cor-
responds to the phase rotation H2 ! e

i✓̄23H2. Therefore
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✓23 will be important when discussing CP-conservation.

Recall �0
1 carries the full SM VEV and exact alignment

is when �
0
1 coincides with a mass eigenstate. We choose

to align �
0
1 with h1, which can be achieved by setting

c13 = 0 and ✓13 = ⇡/2 in Eq. (9). We also impose the
ordering, mh1  mh2  mh3 so that mh1 = 125 GeV.

Small departures from alignment can be parameterized
by writing ✓13 = ⇡/2 + ✏, ✏ ⌧ 1,
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In the above, di↵erent choices of parameters truly rep-
resent physically distinct theories [36]. The potentially
complex parameters are {Y3, Z5, Z6, Z7}.

The minimization of the scalar potential gives Y1 =
�Z1/2v2 and Y3 = �Z6v

2
/2. The first relation can be

viewed as the definition of v in the Higgs basis, while the
second relation implies there are only three independent
complex parameters, usually taken to be {Z5, Z6, Z7}. If
one can find a choice of ⌘ such that all parameters in
Eq. (4) are real after imposing the minimization condi-
tion, the vacuum and the bosonic sector of the 2HDM is
CP-invariant. This can happen if and only if [37]
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Otherwise, CP invariance is broken.
In a 2HDM the most general Higgs-fermion interac-

tions result in tree-level flavor-changing neutral currents
(FCNCs), in severe conflict with data. One simple pos-
sibility is to impose a discrete Z2 symmetry [38–40],
�1 ! �1 and �2 ! ��2, which can be broken softly
by mass terms, leading to �6 = �7 = 0 in Eq. (1).

In the Higgs basis, the existence of a softly broken Z2
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Eq. (6) assumes Z6+Z7 6= 0 and Z1 6= Z2, and eliminates
two real degrees of freedom. In the end there are a total
of 9 real parameters in a complex 2HDM.
The Alignment Limit – The alignment limit [21] is
defined by the limit where the scalar carrying the full
VEV in the Higgs basis is aligned with the 125 GeV mass
eigenstate [22–24], in which case the observed Higgs bo-
son couples to the electroweak gauge bosons with SM
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Here we have used the notation cij = cos ✓ij , sij = sin ✓ij ,
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0, which cor-
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✓23 will be important when discussing CP-conservation.

Recall �0
1 carries the full SM VEV and exact alignment

is when �
0
1 coincides with a mass eigenstate. We choose

to align �
0
1 with h1, which can be achieved by setting

c13 = 0 and ✓13 = ⇡/2 in Eq. (9). We also impose the
ordering, mh1  mh2  mh3 so that mh1 = 125 GeV.

Small departures from alignment can be parameterized
by writing ✓13 = ⇡/2 + ✏, ✏ ⌧ 1,
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Choosing {v,mh1 ,mh2 ,mh3 ,mH± , ✓12, ✓13, Z3,Re[Z̃7]}
as our 9 input parameters, all other parameters and
couplings can be expressed accordingly. Some important

• Free parameters:
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3

relations are, in the approximate alignment limit,
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2
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2
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�
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gh1h2h3 = ✏ v Re[Z̃7e
�2i✓12 ] . (16)

From the above we see that the mass splitting between
h3 and h2 is determined at leading order in ✏ by �m

2
23 ⌘

(m2
h3

� m
2
h2
) = v

2
|Z5|. Therefore, in general, an O(v2)

splitting can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1h2h3 is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interactions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermions as well [43, 44]. Two distinct pos-
sibilities exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tan� with cot�. Importantly tan� is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tan�
in the mh2 - mh3 plane. For our parameter region of
interest, tan� ⇠ 1 except when mh2 and mh3 are de-
generate. For concreteness we focus on Type II models
with tan� ⇠ O(1). However since the distinction be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
Two CP-conserving Limits – The condition for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM2 in Eq. (8) is block-diagonal: fM2
13 =

fM2
23 = 0, in which case �

0
1 and �̃

0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas �̃
0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that �̃
0
3 = a

0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see ✓13

controls the mixing between �
0
1 and �̃

0
3, which implies

✓13 = ⇡/2 in the CP-conserving limit. This coincides
with the exact alignment limit ✏ = 0. The mixing be-
tween �̃

0
2 and �̃

0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡/2, which corresponds to h3 = a
0 or

h2 = a
0, respectively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = {0,⇡/2}, Im[Z7] = 0 . (19)

One sees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM2
12 = fM2

23 = 0 and fM2 is again block-
diagonal. In this case �

0
1 can mix with �̃

0
3, since they

are both CP-even. The CP-odd state is �̃
0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡/2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controls alignment, can now be arbitrary. Turning-
o↵ mixing between �̃

0
2 and �̃

0
3 again implies ✓12 = 0 or

⇡/2. Hence CPC2 is represented by:

✓23 = ⇡/2 , ✓12 = {0,⇡/2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important distinction between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏ ⇠ O(10�4), thereby forcing
the 125 GeV Higgs to be almost exactly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that there are two
sources of CPV in 2HDM: Z̃5 and Z̃6 enter into the scalar
mass-squared matrix in Eq. (8), while Z̃7 does not. When
Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one is CP-odd. In this case, measurements of angular
correlations in the scalar couplings to electroweak gauge
bosons and/or fermions will not yield any CPV signals.
Nevertheless CPV could still be present through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgs bosons. Given these considerations, we will analyze
parameter regions close to the CPC2 limit to highlight
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From the above we see that the mass splitting between
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|Z5|. Therefore, in general, an O(v2)

splitting can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1h2h3 is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interactions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermions as well [43, 44]. Two distinct pos-
sibilities exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tan� with cot�. Importantly tan� is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tan�
in the mh2 - mh3 plane. For our parameter region of
interest, tan� ⇠ 1 except when mh2 and mh3 are de-
generate. For concreteness we focus on Type II models
with tan� ⇠ O(1). However since the distinction be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
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One sees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].
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0
3, since they

are both CP-even. The CP-odd state is �̃
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⇡/2. Hence CPC2 is represented by:

✓23 = ⇡/2 , ✓12 = {0,⇡/2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important distinction between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏ ⇠ O(10�4), thereby forcing
the 125 GeV Higgs to be almost exactly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that there are two
sources of CPV in 2HDM: Z̃5 and Z̃6 enter into the scalar
mass-squared matrix in Eq. (8), while Z̃7 does not. When
Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one is CP-odd. In this case, measurements of angular
correlations in the scalar couplings to electroweak gauge
bosons and/or fermions will not yield any CPV signals.
Nevertheless CPV could still be present through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgs bosons. Given these considerations, we will analyze
parameter regions close to the CPC2 limit to highlight
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the 125 GeV Higgs to be almost exactly SM-like [48].
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To the contrary, in CPC2 the SM-like Higgs boson only
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EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that there are two
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Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one is CP-odd. In this case, measurements of angular
correlations in the scalar couplings to electroweak gauge
bosons and/or fermions will not yield any CPV signals.
Nevertheless CPV could still be present through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgs bosons. Given these considerations, we will analyze
parameter regions close to the CPC2 limit to highlight

FIG. 1: Left: tan� contours in the mh2 - mh3 plane. Right: LHC
constraints on |✏| from Higgs couplings with gluons (g), vector
bosons (V ), fermions (F ) and photons (�), as well as searches
for h2/3 ! Zh1 (cyan). Stars denote our benchmark point.

by4
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⇡

2
+ ✏ ) s13 ⇡ 1 and h3 ⇡ �

0
1 , (54)

where |✏| ⌧ 1 and ✏ < 0. The mixing matrix in Eq. (75) now exhibits the following pattern,
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. (55)

The orthogonality condition in the above equations are preserved up to O(✏2). This means,q

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+ 
2
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= ✏, h3 = �✏c12 and h2 = ✏s12. From the mixing matrix, if we choose h1 = �
0
1,

and we want to keep the CP conservation, we will find out h1 = 0 ⇥ �̃
0
2, this tells us �̃
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2 is

CP odd, making ✓23 = ⇡/2. Otherwise, there will be CP odd component a20 in SM Higgs h1
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In this limit, we have the contours for Zi in figure 1. For Z1, it does not strongly depends

on mh3 , mh2 and ✓12 as ✏ is very tiny. In the first panel of fig 1, for the benchmark points

✓12 = 0, ⇡/2, Z1 will be only depends on one mass mh3 or mh2 . In the constraint limit,

we will find out ✏ < 0.2, so we have the Z1 contour on the second panel of fig 1 with

✏ 2 [0, 0.2]. In the third panel of figure 1, we have the contour of Re[Z5e
�2i✓23 ] with mh3

and mh2 . In the equation of Re[Z5e
�2i✓23 ], it does not strongly depends on ✏, which can

be seen in figure 1. Re[Z5e
�2i✓23 ] depends on the mass square di↵erence of h3 and h2, so

Re[Z5e
�2i✓23 ] = 0 if mh3 = mh2 . Re[Z5e

�2i✓23 ] depend on cos2✓12 , which is always equal to 1

4 Since hi, i = 1, 2, 3 are dummy variables, the other two cases where hi = �
0
1, i = 1, 2 are physically

equivalent scenarios.
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CP CONSERVATIVE LIMIT

2

There is a residual U(1) redundancy in the Higgs basis,
labelled by H2 ! e

i⌘
H2, which leaves Eq. (3) invariant

and motivates writing the scalar potential as [36]

V = Y1H
†
1H1 + Y2H

†
2H2 +

⇣
Y3e

�i⌘
H

†
1H2 + h.c.

⌘

+
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2
(H†
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2 +
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2
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2H2)
2

+ Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
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+


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2
e
�2i⌘(H†

1H2)
2 + Z6e

�i⌘(H†
1H1)(H

†
1H2)

+Z7e
�i⌘(H†

2H2)(H
†
1H2) + h.c.

i
. (4)

In the above, di↵erent choices of parameters truly rep-
resent physically distinct theories [36]. The potentially
complex parameters are {Y3, Z5, Z6, Z7}.

The minimization of the scalar potential gives Y1 =
�Z1/2v2 and Y3 = �Z6v

2
/2. The first relation can be

viewed as the definition of v in the Higgs basis, while the
second relation implies there are only three independent
complex parameters, usually taken to be {Z5, Z6, Z7}. If
one can find a choice of ⌘ such that all parameters in
Eq. (4) are real after imposing the minimization condi-
tion, the vacuum and the bosonic sector of the 2HDM is
CP-invariant. This can happen if and only if [37]

Im(Z⇤
5Z

2
6 ) = Im(Z⇤

5Z
2
7 ) = Im(Z⇤

6Z7) = 0 . (5)

Otherwise, CP invariance is broken.
In a 2HDM the most general Higgs-fermion interac-

tions result in tree-level flavor-changing neutral currents
(FCNCs), in severe conflict with data. One simple pos-
sibility is to impose a discrete Z2 symmetry [38–40],
�1 ! �1 and �2 ! ��2, which can be broken softly
by mass terms, leading to �6 = �7 = 0 in Eq. (1).

In the Higgs basis, the existence of a softly broken Z2

symmetry is guaranteed through the condition [36, 41],

(Z1 � Z2) [(Z3 + Z4)(Z6 + Z7)
⇤
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7
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⇤
5 (Z6 + Z7)]� 2(Z6 + Z7)

⇤(|Z6|
2
� |Z7|

2) = 0 . (6)

Eq. (6) assumes Z6+Z7 6= 0 and Z1 6= Z2, and eliminates
two real degrees of freedom. In the end there are a total
of 9 real parameters in a complex 2HDM.
The Alignment Limit – The alignment limit [21] is
defined by the limit where the scalar carrying the full
VEV in the Higgs basis is aligned with the 125 GeV mass
eigenstate [22–24], in which case the observed Higgs bo-
son couples to the electroweak gauge bosons with SM
strength. We will parameterize the Higgs basis dou-
blets as H1 = (G+

, (v + �
0
1 + iG

0)/
p
2)T and H2 =

(H+
, (�0

2 + ia
0)/

p
2)T , where G

+ and G0 are the Gold-
stone bosons. The neutral fields are �

0
1, �

0
2 and a

0, and
the charged field is H

+. The mass-squared matrix M
2

in the �
0
1 � �

0
2 � a

0 basis can be diagonalized by an or-
thogonal matrix R relating ~� = (�0

1,�
0
2, a

0)T to the mass

eigenstates ~h = (h3, h2, h1)T , ~h = R · ~� [36],

R = R12R13R23
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0 1 0
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0 s̄23 c̄23

1

A . (7)

Here we have used the notation cij = cos ✓ij , sij = sin ✓ij ,
c̄23 = cos ✓̄23 and s̄23 = sin ✓̄23 . An important observa-
tion is that ✓̄23 [42] rotates between �

0
2 and a

0, which cor-
responds to the phase rotation H2 ! e

i✓̄23H2. Therefore
the e↵ect of the ✓̄23 rotation is to shift the ⌘ parameter
labelling the Higgs basis. This motivates defining [36]
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where Z̃5 = Z5e
�2i✓23 , Z̃6/7 = Z6/7e

�i✓23 , ✓23 = ⌘ + ✓̄23

and A = Y2+v
2(Z3+Z4�Re[Z̃5]). Alignment is achieved

by the conditions Re[Z̃6] = Im[Z̃6] = 0.

fM2 can be diagonalized by just two angles. Hence
eR fM2 eRT = diag (m2
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) where

eR = R12R13 =
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If we define (�0
1, �̃

0
2, �̃

0
3)

T = (R23 · ~�)T , the mass eigen-
states are given by
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✓23 will be important when discussing CP-conservation.

Recall �0
1 carries the full SM VEV and exact alignment

is when �
0
1 coincides with a mass eigenstate. We choose

to align �
0
1 with h1, which can be achieved by setting

c13 = 0 and ✓13 = ⇡/2 in Eq. (9). We also impose the
ordering, mh1  mh2  mh3 so that mh1 = 125 GeV.

Small departures from alignment can be parameterized
by writing ✓13 = ⇡/2 + ✏, ✏ ⌧ 1,
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A . (11)

Choosing {v,mh1 ,mh2 ,mh3 ,mH± , ✓12, ✓13, Z3,Re[Z̃7]}
as our 9 input parameters, all other parameters and
couplings can be expressed accordingly. Some important
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In the above, di↵erent choices of parameters truly rep-
resent physically distinct theories [36]. The potentially
complex parameters are {Y3, Z5, Z6, Z7}.

The minimization of the scalar potential gives Y1 =
�Z1/2v2 and Y3 = �Z6v

2
/2. The first relation can be

viewed as the definition of v in the Higgs basis, while the
second relation implies there are only three independent
complex parameters, usually taken to be {Z5, Z6, Z7}. If
one can find a choice of ⌘ such that all parameters in
Eq. (4) are real after imposing the minimization condi-
tion, the vacuum and the bosonic sector of the 2HDM is
CP-invariant. This can happen if and only if [37]

Im(Z⇤
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6 ) = Im(Z⇤

5Z
2
7 ) = Im(Z⇤

6Z7) = 0 . (5)

Otherwise, CP invariance is broken.
In a 2HDM the most general Higgs-fermion interac-

tions result in tree-level flavor-changing neutral currents
(FCNCs), in severe conflict with data. One simple pos-
sibility is to impose a discrete Z2 symmetry [38–40],
�1 ! �1 and �2 ! ��2, which can be broken softly
by mass terms, leading to �6 = �7 = 0 in Eq. (1).

In the Higgs basis, the existence of a softly broken Z2

symmetry is guaranteed through the condition [36, 41],
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Eq. (6) assumes Z6+Z7 6= 0 and Z1 6= Z2, and eliminates
two real degrees of freedom. In the end there are a total
of 9 real parameters in a complex 2HDM.
The Alignment Limit – The alignment limit [21] is
defined by the limit where the scalar carrying the full
VEV in the Higgs basis is aligned with the 125 GeV mass
eigenstate [22–24], in which case the observed Higgs bo-
son couples to the electroweak gauge bosons with SM
strength. We will parameterize the Higgs basis dou-
blets as H1 = (G+

, (v + �
0
1 + iG

0)/
p
2)T and H2 =

(H+
, (�0

2 + ia
0)/

p
2)T , where G

+ and G0 are the Gold-
stone bosons. The neutral fields are �

0
1, �

0
2 and a

0, and
the charged field is H

+. The mass-squared matrix M
2

in the �
0
1 � �

0
2 � a

0 basis can be diagonalized by an or-
thogonal matrix R relating ~� = (�0
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2, a

0)T to the mass

eigenstates ~h = (h3, h2, h1)T , ~h = R · ~� [36],
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Here we have used the notation cij = cos ✓ij , sij = sin ✓ij ,
c̄23 = cos ✓̄23 and s̄23 = sin ✓̄23 . An important observa-
tion is that ✓̄23 [42] rotates between �

0
2 and a

0, which cor-
responds to the phase rotation H2 ! e

i✓̄23H2. Therefore
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✓23 will be important when discussing CP-conservation.

Recall �0
1 carries the full SM VEV and exact alignment

is when �
0
1 coincides with a mass eigenstate. We choose

to align �
0
1 with h1, which can be achieved by setting

c13 = 0 and ✓13 = ⇡/2 in Eq. (9). We also impose the
ordering, mh1  mh2  mh3 so that mh1 = 125 GeV.

Small departures from alignment can be parameterized
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Choosing {v,mh1 ,mh2 ,mh3 ,mH± , ✓12, ✓13, Z3,Re[Z̃7]}
as our 9 input parameters, all other parameters and
couplings can be expressed accordingly. Some important
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viewed as the definition of v in the Higgs basis, while the
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two real degrees of freedom. In the end there are a total
of 9 real parameters in a complex 2HDM.
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Recall �0
1 carries the full SM VEV and exact alignment

is when �
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1 coincides with a mass eigenstate. We choose

to align �
0
1 with h1, which can be achieved by setting

c13 = 0 and ✓13 = ⇡/2 in Eq. (9). We also impose the
ordering, mh1  mh2  mh3 so that mh1 = 125 GeV.

Small departures from alignment can be parameterized
by writing ✓13 = ⇡/2 + ✏, ✏ ⌧ 1,
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Choosing {v,mh1 ,mh2 ,mh3 ,mH± , ✓12, ✓13, Z3,Re[Z̃7]}
as our 9 input parameters, all other parameters and
couplings can be expressed accordingly. Some important

• Higgs mixing:

• Case I:

• Case 2:

3

relations are, in the approximate alignment limit,
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gh1h2h3 = ✏ v Re[Z̃7e
�2i✓12 ] . (16)

From the above we see that the mass splitting between
h3 and h2 is determined at leading order in ✏ by �m

2
23 ⌘

(m2
h3

� m
2
h2
) = v

2
|Z5|. Therefore, in general, an O(v2)

splitting can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1h2h3 is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interactions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermions as well [43, 44]. Two distinct pos-
sibilities exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tan� with cot�. Importantly tan� is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tan�
in the mh2 - mh3 plane. For our parameter region of
interest, tan� ⇠ 1 except when mh2 and mh3 are de-
generate. For concreteness we focus on Type II models
with tan� ⇠ O(1). However since the distinction be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
Two CP-conserving Limits – The condition for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM2 in Eq. (8) is block-diagonal: fM2
13 =

fM2
23 = 0, in which case �

0
1 and �̃

0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas �̃
0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that �̃
0
3 = a

0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see ✓13

controls the mixing between �
0
1 and �̃

0
3, which implies

✓13 = ⇡/2 in the CP-conserving limit. This coincides
with the exact alignment limit ✏ = 0. The mixing be-
tween �̃

0
2 and �̃

0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡/2, which corresponds to h3 = a
0 or

h2 = a
0, respectively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = {0,⇡/2}, Im[Z7] = 0 . (19)

One sees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM2
12 = fM2

23 = 0 and fM2 is again block-
diagonal. In this case �

0
1 can mix with �̃

0
3, since they

are both CP-even. The CP-odd state is �̃
0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡/2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controls alignment, can now be arbitrary. Turning-
o↵ mixing between �̃

0
2 and �̃

0
3 again implies ✓12 = 0 or

⇡/2. Hence CPC2 is represented by:

✓23 = ⇡/2 , ✓12 = {0,⇡/2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important distinction between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏ ⇠ O(10�4), thereby forcing
the 125 GeV Higgs to be almost exactly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that there are two
sources of CPV in 2HDM: Z̃5 and Z̃6 enter into the scalar
mass-squared matrix in Eq. (8), while Z̃7 does not. When
Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one is CP-odd. In this case, measurements of angular
correlations in the scalar couplings to electroweak gauge
bosons and/or fermions will not yield any CPV signals.
Nevertheless CPV could still be present through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgs bosons. Given these considerations, we will analyze
parameter regions close to the CPC2 limit to highlight

FIG. 1: Left: tan� contours in the mh2 - mh3 plane. Right: LHC
constraints on |✏| from Higgs couplings with gluons (g), vector
bosons (V ), fermions (F ) and photons (�), as well as searches
for h2/3 ! Zh1 (cyan). Stars denote our benchmark point.
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Because of these Z2 condition, also considering the oblique parameters’ measurement, we

can reduce our free parameters into 6

{h1 ,h2 ,mh1 ,mh2 = mH± ,mh3 , Z3, Y2,Re[Z̃7]} (65)

Next part we will discuss the CP conservative conditions. We will start from the mixing
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The CP conservation means all of the mass eigenstates are pure CP eigenstates. As we

know h1 and �
0
1 are CP even, while �0

2 and a
0 are also CP eigenstates. The CP conservation

relevant interactions are The charged Higgs related HHH interactions are
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If s23 = 0, so h1 will have a
0 component, so ✏ = 0 to make sure h1 is CP even. s12+23 = 0

or s12+23 = 1 to have h2 and h3 are also CP eigenstates. So we have ✓23 = 0 and ✏ = 0 and

✓12 = 0, ⇡/2.

Re[Z6] = Im[Z6] = Im[Z5] = 0 (68)

If ✓12 = 0, h2 is CP even and h3 is CP odd, so that gh3H
+H� = 0, making Im[Z̃7] = Im[Z7] =

0. If ✓12 = ⇡/2, h2 is CP odd and h3 is CP even, so that gh2H
+H� = 0, also making

Im[Z̃7] = Im[Z7] = 0. In conclusion, for ✓23 = 0, we need CP conservation condition

Re[Z6] = Im[Z6] = Im[Z5] = Im[Z7] = 0 (69)
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• HHH couplings:
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• Relationships between 𝑍$and mixing angles:
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relations are, in the approximate alignment limit,
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From the above we see that the mass splitting between
h3 and h2 is determined at leading order in ✏ by �m
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splitting can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1h2h3 is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interactions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermions as well [43, 44]. Two distinct pos-
sibilities exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tan� with cot�. Importantly tan� is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tan�
in the mh2 - mh3 plane. For our parameter region of
interest, tan� ⇠ 1 except when mh2 and mh3 are de-
generate. For concreteness we focus on Type II models
with tan� ⇠ O(1). However since the distinction be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
Two CP-conserving Limits – The condition for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM2 in Eq. (8) is block-diagonal: fM2
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23 = 0, in which case �
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1 and �̃
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2 defined in Eq. (10)

are CP-even and can mix in general, whereas �̃
0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that �̃
0
3 = a

0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see ✓13

controls the mixing between �
0
1 and �̃

0
3, which implies

✓13 = ⇡/2 in the CP-conserving limit. This coincides
with the exact alignment limit ✏ = 0. The mixing be-
tween �̃

0
2 and �̃

0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡/2, which corresponds to h3 = a
0 or

h2 = a
0, respectively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = {0,⇡/2}, Im[Z7] = 0 . (19)

One sees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM2
12 = fM2

23 = 0 and fM2 is again block-
diagonal. In this case �

0
1 can mix with �̃

0
3, since they

are both CP-even. The CP-odd state is �̃
0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡/2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controls alignment, can now be arbitrary. Turning-
o↵ mixing between �̃

0
2 and �̃

0
3 again implies ✓12 = 0 or

⇡/2. Hence CPC2 is represented by:

✓23 = ⇡/2 , ✓12 = {0,⇡/2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important distinction between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏ ⇠ O(10�4), thereby forcing
the 125 GeV Higgs to be almost exactly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that there are two
sources of CPV in 2HDM: Z̃5 and Z̃6 enter into the scalar
mass-squared matrix in Eq. (8), while Z̃7 does not. When
Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one is CP-odd. In this case, measurements of angular
correlations in the scalar couplings to electroweak gauge
bosons and/or fermions will not yield any CPV signals.
Nevertheless CPV could still be present through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgs bosons. Given these considerations, we will analyze
parameter regions close to the CPC2 limit to highlight

FIG. 1: Left: tan� contours in the mh2 - mh3 plane. Right: LHC
constraints on |✏| from Higgs couplings with gluons (g), vector
bosons (V ), fermions (F ) and photons (�), as well as searches
for h2/3 ! Zh1 (cyan). Stars denote our benchmark point.
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CP CONSERVATIVE AND ALIGNMENT LIMIT CTHDM

§ We are interested in the interplay between the Higgs alignment and CPX in
C2HDM. There are two important experimental observations:

• The 125 GeV Higgs is SM-like. (𝑚!" = 125GeV)

• EDM places stringent constraints on CPX.

§ These motivates considering the small departures from

• The exact alignment limit. (Mixing among 3 Higgs)

• The exact CP-conserving limit. (Im 𝑍& ~0, Re 𝑍& ~0, 𝜃#' ≠ 0, (
#
)
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Figure 6: Excluded parameter space regions in the mmod�
h scenario (left) and in the M125

h (c̃)
scenario (right). The grey area delimited by the solid black line and markers represents the
observed excluded region. The dashed black line and the green (yellow) regions represent
the median expected exclusion regions and one (two) standard deviations from the expected
median, respectively. The region below the red line is excluded assuming that the observed
neutral Higgs boson is the light CP-even 2HDM Higgs boson with a mass of 125 ± 3 GeV, where
the uncertainty is the theoretical uncertainty in the mass calculation.
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Finally, we use eq. (5.43) to isolate U :

U ! S tan2 θW . (5.55)

In the custodial limit where g′ = 0, it follows that tan θW = 0, in which case U = 0. Remarkably, we find
that U = 0 in this limit independently of the values of the neutral Higgs masses. Thus, custodial symmetry
breaking effects arising from the scalar potential do not generate a non-zero value for U at O(v2/Λ2) in the
approach to the decoupling limit. However, eqs. (5.35)–(5.37) imply that a non-zero value for U would be
generated at order O(v4/Λ4). This observation suggests that U " T over a significant range of the 2HDM
parameter space, a fact that can be verified numerically.

6. NUMERICAL ANALYSIS

The parameters S, T and U obtained from an analysis of precision electroweak data are found to be [19]:

S = 0.01± 0.10,

T = 0.03± 0.11,

U = 0.06± 0.10, (6.1)

relative to the Standard Model, with a reference Higgs mass of mφ = 117 GeV. Similar results have been
obtained by the GFITTER collaboration [20]. Alternatively, if one assumes that U = 0 (typically, one expects
U " S in many models of new physics beyond the Standard Model), then the corresponding analysis of S
and T yields [19]:

S = 0.03± 0.09 , T = 0.07± 0.08 . (6.2)

These limits indicate that new physics contributions to the oblique parameters are tightly constrained. In
particular, if one assumes that the new physics contributions to S, T and U arise solely from the 2HDM
sector, then eqs. (6.1) and (6.2) would constrain the parameters of the 2HDM scalar potential. Such studies
have appeared in the literature in a less general framework. For example, in ref. [30], ρ ≡ αT was used to
constrain a modified version of the 2HDM in which certain scalar couplings were set equal to zero, and tanβ
was assumed to be a physical observable. In our approach, only basis-independent quantities are employed.
A full numerical study of the constraints of precision electroweak data on the general 2HDM contributions
to the oblique parameters will be presented elsewhere (for a preliminary study, see ref. [31]). In this section,
we shall outline our analysis methods and describe some of the key results and features of our study.
The parameters of the 2HDM that are constrained by S, T , and U can be taken to be Z1, Z3, Z3 + Z4,

Z5 e−2iθ23 , Z6 e−iθ23 and Y2, since these 6 quantities determine the physical Higgs masses [cf. eqs. (2.17)
and (2.22)] and the invariant quantities qk# [specified in Table I]. We impose one theoretical constraint by
demanding that the |Zi| do not exceed upper bounds corresponding to the requirement that all bosonic
scattering amplitudes satisfy tree-level unitarity (the relevant upper bounds are derived in Appendix F). In
order to compare with the determination of of S, T and U in ref. [19], we fix the reference Higgs mass at
mφ = 117 GeV. The procedure used here to study the effect of the 2HDM on the oblique parameters was to
choose random values of the six parameters in the space allowed by the tree-level unitarity bounds. Then
the Higgs masses and qk# are calculated numerically and inserted into eqs. (5.9)–(5.17) to obtain S, T , and
U for each point in the parameter space.
In our first study, we imposed an additional requirement that the mass of the lightest neutral Higgs boson,

m1, fall within 10 GeV of the reference Higgs mass. It was found that the 2HDM consistently produces values
of U within 0.02 of zero. Thus, in order to derive constraints on the 2HDM parameters, one can reliably set
U = 0 and compare the computed S and T values of the 2HDM with the results given in eq. (6.2). Scanning
the 2HDM parameter space and comparing with the allowed 2 σ contour ellipse in S–T plane produces the
results shown in Fig. 1.
From the scatter plots shown in Fig. 1, it is evident that the values of S produced are all consistent with

the experimental constraints of eq. (6.2). In contrast, there are many points that lie outside the allowed

• The analysis of precision electroweak data get:

• In the alignment Limit:
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FIG. 1: Scatter plots for T as a function of S, with m1 = 117 ± 10 GeV. The ellipses, representing the 1 σ and 2 σ
contours allowed by precision electroweak data, are based on ref. [19], with the parameter U fixed to zero. Plot (a)
shows the expanded view in the S–T plane, and plot (b) shows a close-up view of the allowed region.

range for T . These points correspond to 2HDM parameters that significantly violate the custodial symmetry
of the scalar potential. In particular, one must have a significant splitting between the masses of the H±

and one of the heavy neutral Higgs bosons (identified in the generic CP-conserving 2HDM as A0). This
region of parameter space is very far away from the decoupling region in which the 2HDM contributions to
T are quite small. When T is large, the large values of the corresponding heavy Higgs masses are driven
primarily by large values of the Ziv2 that compete with (and in some regions dominate) the contribution
of Y2. Even though the maximal values of the Zi are constrained by tree-level unitarity, there is still a
robust region of the 2HDM parameter space in which |T | lies significantly outside of the interval allowed by
eq. (6.2). It is also interesting to note that both positive and negative signs for T are allowed, with roughly
equal probability over the 2HDM parameter space.
In the analysis above, we have fixed the value of the lightest neutral Higgs mass,m1, to be close to 117 GeV.

One can now investigate the consequence of relaxing this assumption. First, consider the decoupling limit of
the 2HDM where m1 ! m2, m3. As m1 increases (in a mass regime in which h1 is still significantly lighter
than h2 and h3), we should simply reproduce the known constraints of precision electroweak observables on
the mass of m1. As a concrete example, consider the following input parameters:

mφ = 117 GeV, Z1 = 0.227, Y2 = (1 TeV)2, (6.3)

with all other invariant Z parameters equal to 0.01. The mass spectrum corresponding to these values is
m1 = 117 GeV, m2 = m3 = mH± = 1 TeV. As expected, in this limit one finds that S " T " 0. As Z1 is
increased from 0.227 to 0.505, m1 increases from 117 GeV to 175 GeV, at which point T and S exceed the
boundary of the 2 σ ellipse. In Fig. 2, the resulting S and T are shown as m1 is varied from 117 GeV to
500 GeV.
If we depart significantly from the decoupling limit, then the custodial-symmetry breaking mass splitting

between the H± and one of the heavy neutral Higgs states can contribute positively to T and offset the
negative T values shown in Fig. 2. In this way, values of the lightest Higgs boson mass above 150 GeV may

H.Haber, D.O’Neil Phys.Rev. D83 (2011) 055017
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IV. EDM CONSTRAINTS

We will first consider the constraints from EDM. The constraint for electron edm is

stronger than neutron edm. Following the formula in [11, 12], we consider the Barr-Zee

diagrams contribution the EDM. The allowed parameter space for electron edm will give

a O(2) order smaller neutron edm comparing to the constraints. So we only consider the
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the Higgs boson-loop contributions are
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19• gauge-loop contributions 
the gauge-loop contributions to EDM are
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where V = �, Z, and NC is the color factor. The relevant coupling constants are gv
�ff
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and the C0 is the Passarino-Veltman function.
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If m1 = 0, the Passarino-Veltman function will be

C0

�
0, 0; 0,m2

2,m
2
3

�
=

1

m
2
3 �m

3
2

log


m

2
2

m
2
3

�
(108)

In the alignment limit, we could first review the contributions from di↵erent loops, related to

the CP e↵ects. We first consider the contribution from gauge boson, the important formula
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COLLIDER PHENOMENOLOGY 

• Branching ratios for benchmark points:

3

relations are, in the approximate alignment limit,
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gh1h2h3 = ✏ v Re[Z̃7e
�2i✓12 ] . (16)

From the above we see that the mass splitting between
h3 and h2 is determined at leading order in ✏ by �m

2
23 ⌘

(m2
h3

� m
2
h2
) = v

2
|Z5|. Therefore, in general, an O(v2)

splitting can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1h2h3 is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interactions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermions as well [43, 44]. Two distinct pos-
sibilities exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tan� with cot�. Importantly tan� is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tan�
in the mh2 - mh3 plane. For our parameter region of
interest, tan� ⇠ 1 except when mh2 and mh3 are de-
generate. For concreteness we focus on Type II models
with tan� ⇠ O(1). However since the distinction be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
Two CP-conserving Limits – The condition for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM2 in Eq. (8) is block-diagonal: fM2
13 =

fM2
23 = 0, in which case �

0
1 and �̃

0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas �̃
0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that �̃
0
3 = a

0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see ✓13

controls the mixing between �
0
1 and �̃

0
3, which implies

✓13 = ⇡/2 in the CP-conserving limit. This coincides
with the exact alignment limit ✏ = 0. The mixing be-
tween �̃

0
2 and �̃

0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡/2, which corresponds to h3 = a
0 or

h2 = a
0, respectively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = {0,⇡/2}, Im[Z7] = 0 . (19)

One sees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM2
12 = fM2

23 = 0 and fM2 is again block-
diagonal. In this case �

0
1 can mix with �̃

0
3, since they

are both CP-even. The CP-odd state is �̃
0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡/2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controls alignment, can now be arbitrary. Turning-
o↵ mixing between �̃

0
2 and �̃

0
3 again implies ✓12 = 0 or

⇡/2. Hence CPC2 is represented by:

✓23 = ⇡/2 , ✓12 = {0,⇡/2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important distinction between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏ ⇠ O(10�4), thereby forcing
the 125 GeV Higgs to be almost exactly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that there are two
sources of CPV in 2HDM: Z̃5 and Z̃6 enter into the scalar
mass-squared matrix in Eq. (8), while Z̃7 does not. When
Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one is CP-odd. In this case, measurements of angular
correlations in the scalar couplings to electroweak gauge
bosons and/or fermions will not yield any CPV signals.
Nevertheless CPV could still be present through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgs bosons. Given these considerations, we will analyze
parameter regions close to the CPC2 limit to highlight

FIG. 1: Left: tan� contours in the mh2 - mh3 plane. Right: LHC
constraints on |✏| from Higgs couplings with gluons (g), vector
bosons (V ), fermions (F ) and photons (�), as well as searches
for h2/3 ! Zh1 (cyan). Stars denote our benchmark point.

𝜎 𝑔𝑔 → ℎT ≃ 5.8pb, 𝜎 𝑔𝑔 → ℎY ≃ 2.7pb



OTHER CONSTRAINTS

emission of an HH pair from a top quark loop. The
minimum at kλ ¼ 2.46 corresponds to the maximum
negative interference between the two diagrams, which
results in a minimum of the cross section but at the same
time enhances the relative importance of tails in the MHH
distribution. The maximum at kλ ≈ 5 is due to the softness
of the MHH spectrum for such values of the trilinear
coupling, causing a larger fraction of events to fall outside
experimental acceptance. As jkλj increases, the production
via the trilinear Higgs coupling becomes dominant and the
limit asymptotically approaches the same value for both
kλ ≪ −10 and kλ ≫ 10. This is reflected in the observed
exclusion limit as well, where the significance of the small
observed excess is relatively less important in the more
sensitive small kλ region than at large values of kλ. When
fixing all the other EFT parameters to their SM values, the
kλ parameter is observed (expected) to be constrained to the
range −11.8 < kλ < 18.8 (−7.1 < kλ < 13.6) at 95% C.L.
The observed exclusions for the different EFT benchmarks
[26] are in the range of 100–3000 fb, and can be seen in
Supplemental Material [58]. A small excess, similar to that
observed at the SM value, is present across most of the
phase space with the exception of the more boosted
topologies.
The resonant search is performed in the range of masses

from 250 to 3000 GeV. Under the hypothesis of a narrow-
width resonance, no significant excess is found across the
whole range for either a spin-0 or a spin-2 resonance. The
results of the combined resonant search are shown in Fig. 3
for the spin-0 model, and in the Supplemental Material [58]
for the spin-2 case.
In summary, a combination of searches for nonresonant

and resonant Higgs boson pair production has been
presented. The combination includes the bbγγ, bbττ,

bbbb, and bbVV channels, where V represents a W or
Z boson, using a data sample collected in proton-proton
collisions at

ffiffiffi
s

p
¼ 13 TeV, which corresponds to an

integrated luminosity of 35.9 fb−1. Upper limits at
95% confidence level (C.L.) on the Higgs boson pair
production cross section are obtained. For the nonresonant
production mechanism, the observed (expected) 95% C.L.
corresponds to 22.2 (12.8) times the theoretical prediction
for the standard model cross section. An effective field
theory framework is used to parametrize the cross section
as a function of anomalous couplings of the Higgs boson.
When varying only the ratio kλ between the Higgs trilinear
coupling λHHH and its standard model expectation, values
of kλ in the region −11.8 < kλ < 18.8 (−7.1 < kλ < 13.6)
are still allowed by the observed (expected) data. For the
resonant production mechanism, upper exclusion limits at
95% C.L. are obtained for the production of a narrow
resonance with mass ranging from 250 to 3000 GeV. These
results represent both the most sensitive and most com-
prehensive study of double Higgs production at the LHC
to date.
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exclusion limits on the production of a narrow, spin zero
resonance (X) decaying into a pair of Higgs bosons. The inner
(green) band and the outer (yellow) band indicate the regions
containing 68 and 95%, respectively, of the limits on the HH
cross section expected under the background-only hypothesis.
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SUMMARY

• THERE IS AN INTERESTING INTERPLAY BETWEEN ALIGNMENT LIMIT AND CP CONSERVING LIMIT 
IN C2HDM. IN ONE CASE, THE ALIGNMENT LIMIT IS IDENTICAL WITH THE CP-LIMIT, WHILE IN 
THE OTHER CASE THEY ARE INDEPENDENT.

• THERE IS A SMOKING-GUN SIGNAL FOR CP VIOLATION AT THE LHC IN C2HDM, WITHOUT 
RECOURSE TO ANGULAR DISTRIBUTIONS, BY SEARCHING FOR

4

FIG. 2: Contours for eEDM (de) in ✓23 vs. |✏| (left), and
Re[Z̃7] (right) plane. Only regions within the dashed red lines are
experimentally allowed |de| < 1.1⇥10�29e cm (90%CL) [30]. Thick
red line denotes |de| = 0. Note di↵erent scales for the left/right axes
and legends. Stars denote our benchmark point.

smoking gun signals for CPV in Higgs to Higgs decays.

LHC/EDM Constraints – In the right panel of Fig. 1
we show the LHC constraints on |✏| and Re[Z̃7]. We
fist fix the charged Higgs mass equal to h2 due to the
precision measurement of the oblique parameters S, T
and U[50] We fix mh3 = 500 GeV, mh2 = mH± = 280
GeV, mH± = 280 GeV, Z3 = 0.1 and ✓23 = 0.7. We
further chose ✓12 = ⇡/2 so that h3 is mostly CP-odd.
For Higgs coupling measurements we use recent results
from both ATLAS [51, 52] and CMS [53], which constrain
i = g

measured
i

/g
SM
i

, i = g, V, F, �. Blue, green, red and
orange shaded regions correspond to regions excluded by
constraints coming from g, V , F and � , respectively.
The cyan shaded region is excluded due to searches for
h2/3 ! h1Z [54–56]. As can be seen, the i and the
h1Z searches depend mostly on |✏| and only very mildly
on Re[Z̃7]. The charged Higgs decaying to tb searches
[57] provide the stronge constraint, requiring Re[Z̃7] � 2.
The constraint on the h2 decaying to h1h1 for mh2 =
280 GeV is �(h2 ! h1h1) < 1.7pb.[58], which is not
constraining our bench mark point. We also checked that
LHC limits on heavy Higgs decays to tt̄ final states [59]
are not constraining for our benchmark.

For EDM we focus on the constraints from the electron
EDM (eEDM) de [30, 60, 61] which are stronger than
those from the neutron EDM [62]. In particular, using
the results in Refs. [16, 63–66] we consider contributions
from the Barr-Zee diagrams [67]. There are three contri-
butions for the eEDM [16]. All of them depend on ✏, ✓23,
✓12 and the Higgs masses. Additionally the contributions
from the gauge bosons’ loops also depend on Re[Z̃7]. In
Fig. 2 contours for the eEDM and the experimental con-
straints on the most relevant parameters are shown: ✓23
vs. ✏ (left) and Re[Z̃7] (right). The solid red line denotes
de = 0, while the dashed red lines bound the experimen-
tally allowed region |de| < 1.1⇥10�29e cm (90%CL) [30].
We fix the mass spectrum as for the LHC constraints,
and again choose ✓12 = ⇡

2 . While not shown, EDM
constraints are minimized when the masses are degen-
erate [36]. However, regardless of the mass spectrum,
eEDM constraints severely limit the CPV components of
the mass eigenstates. This can be seen from the lim-

FIG. 3: Branching ratios for h3 (left) and h2 (right) for the
listed parameters. Grey dashed lines denote mass spectra in
tension with eEDM constraints.

its on de tracking the behavior expected from our anal-
ysis of CPC1 and CPC2. Small values of ✓23 (CPC1
limit) can only be obtained for small values of |✏|, but
for |✓23| ⇠ ⇡/2 (CPC2), ✏ is e↵ectively unconstrained.
Further, small values of Re[Z̃7] are obtained for values
of ✓23 ⇠ ⇡/2 (CPC2 limit), but larger values are allowed
as ✓23 decreases. Additionally, we see that in regions far
from CPC1 and CPC2, de can be 0 due to cancellations
between various contributions.
Collider Phenomenology –With the generically small
CPV components allowed in the mass eigenstates due to
experimental constraints, directly probing the CP nature
of the mass eigenstates will be challenging. However, the
decay (h3 ! h2h1) could provide a smoking gun signa-
ture for CPV in 2HDMs. If kinematically accessible, this
signal is maximized for maximum possible misalignment
✏ and largest possible Re[Z̃7] (cf. Eq. (16)), as allowed
from LHC and where eEDM constraints are minimized.
Further, we are interested in the possibility of both ad-
ditional Higgs bosons being within reach of the LHC.
Hence we choose the following benchmark point for col-
lider phenomenology:

{Z3,Re[Z̃7], ✓12, ✓23, ✏} = {0.1, 3,⇡/2, 0.7,�0.12},

{mh3 ,mh2 ,mH±} = {500, 280, 280} GeV . (21)

With these parameters, h3 is mostly CP-odd, while h2

and h1 are mostly CP-even.
Fig. 3 shows the branching ratios of h3 (left panel) and

h2 (right panel). Grey hatching denotes mass spectra in
tension with eEDM constraints. We see for our bench-
mark BR(h3 ! h2h1) ⇠ 1%, with h2 primarily decaying
into h1h1. The main production channel for both h2 and
h3 is gluon fusion. At the

p
s = 13 TeV LHC [68]:

�(gg ! h2) ' 1.7 pb , �(gg ! h3) ' 0.36 pb .

(22)

The large production rate for h3 stems from its mostly
CP-odd nature. Therefore, for an integrated luminosity
of L = 3000 fb�1, we will have approximately 104 CPV
triple Higgs events (h3 ! h2h1 ! h1h1h1). This signa-
ture has not been searched for at the LHC. In models
with additional CP-even scalars beyond the 2HDM, such


