Search for CP violation in the Higgs sector at CMS

肖朦,浙江大学 FIND CP violation at electroweak scale and beyond, USTC, 2023.08.25

CPV in Higgs

CPV: Non-zero CP-even and CP-odd eigenstate

$$A(\text{HVV}) = \frac{1}{v} a_1^{VV} m_V^2 \epsilon_{V_1}^* \epsilon_{V_2}^* + \frac{1}{v} a_3^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

$$CP\text{-even} \qquad CP\text{-odd}$$

$$A(H \to f\bar{f}) = \frac{m_f}{v} \bar{u}_2 \left(b_1^{Hf\bar{f}} + i b_2^{Hf\bar{f}} \gamma_5 \right) u_1$$

$$CP\text{-even} \qquad CP\text{-odd}$$

SM: CP-even=1, CP-odd=0 BSM: EW Baryongenis, add CPV in Higgs sector - 2HDM, EW singlets.... Experiment: model independent measurement of the coefficients

CP-odd xsec fraction: fa3 < 0.4 VBF, VH, $H \rightarrow anything$

bb: PLB 759 (2016) 672 4I: PLB 775 (2017) 1 ττ: PRD 100 (2019) 112002 4I: PRD 104 (2021) 052004 ττ: PRD 108 (2023) 032013

< 1.7 x 10⁻³

Off-shell $H \rightarrow ZZ$

4I: PRD 99 (2019) 112003

< 1 x 10⁻³

4

What's the needed precision

arXiv:1310.8361 Snowmass 2013 report

Collider	pp	pp
E (GeV)	14,000	$14,\!000$
$\mathcal{L} ext{(fb}^{-1})$	300	3,000
spin- 2_m^+	$\sim 10\sigma$	$\gg 10\sigma$
VVH^{\dagger}	0.07	0.02
VVH^{\ddagger}	$4 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$
VVH^{\diamond}	$7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$

VBF and VH

arXiv:1310.8361 **Snowmass 2013 report**

	Collider	pp	pp	ta	arget
	E (GeV)	14,000	$14,\!000$	(tl	neory)
	\mathcal{L} (fb ⁻¹)	300	3,000		
	spin- 2_m^+	$\sim 10\sigma$	$\gg 10\sigma$		$>5\sigma$
H→ZZ	VVH^{\dagger}	0.07	0.02	_ <	10^{-5}
VH	VVH^{\ddagger}	$4 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	· <	10^{-5}
VBF	VVH^{\diamond}	$7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	<	10^{-5}

CP-odd xsec increase with energy scale VH, VBF: higher energy scale

6

HVV, $H \rightarrow 4I$

ME based observables

PRD 104 (2021) 052004

CP-even vs CP-odd

PRD 108 (2023) 032013

ME based observable, CP-even vs CP-odd

PRD 92 (2015) 012004

H→ 4| < 0.4

PRD 108 (2023) 032013

PLB 775 (2017) 1

Nat. Phys. 18 (2022) 1329

$$A(H \to f\bar{f}) = \frac{m_f}{v}\bar{u}_2 \left(b_1^{Hf\bar{f}} + ib_2^{Hf\bar{f}}\gamma_5\right)u_1$$

- 4I: PRD 104 (2021) 052004 ggH тт: PRD 108 (2023) 032013
- JHEP 06 (2022) 012 ττΗ
- ttH γγ: PRL 125 (2020) 061801 4I: PRD 104 (2021) 052004 multilepton: JHEP 07 (2023) 092 bb: CMS-PAS-HIG-19-011

Col Ε \mathcal{L} spin \overline{VV} VVVVggH $\gamma\gamma I$ $Z\gamma I$ au au EttH $\mu\mu H$

arXiv:1310.8361

Snowmass 2013 report

lider	pp	pp	target
GeV)	$14,\!000$	14,000	(theory)
fb^{-1})	300	3,000	
$n-2_m^+$	$\sim 10\sigma$	$\gg 10\sigma$	$>5\sigma$
H^{\dagger}	0.07	0.02	$< 10^{-5}$
H^{\ddagger}	$4 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$< 10^{-5}$
H^\diamond	$7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	$< 10^{-5}$
H	0.50	0.16	$< 10^{-2}$
H	—	_	$< 10^{-2}$
Η	—	\checkmark	$< 10^{-2}$
H	\checkmark	\checkmark	$< 10^{-2}$
ŗ	\checkmark	\checkmark	$< 10^{-2}$
H			$< 10^{-2}$

CP-odd and even same order

Which Yukawa couplings are possible

$$\begin{split} A(H \to f\bar{f}) &= \frac{m_f}{v} \bar{u}_2 \left(b_1^{Hf\bar{f}} + i b_2^{Hf\bar{f}} \gamma_5 \right) u_1 \qquad f_{CP}^{Hf\bar{f}} \equiv \frac{|b_2^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2} = \sin^2 \left(e^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2}} \right) de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2}} = \sin^2 \left(e^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2}} \right) de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2}} = \sin^2 \left(e^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2}} \right) de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2}} = \sin^2 \left(e^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2}} \right) de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_2^{Hf\bar{f}}|^2}}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2 + |b_1^{Hf\bar{f}}|^2}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}{|b_1^{Hf\bar{f}}|^2}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|^2}} de^{-\frac{1}{2} \frac{|b_1^{Hf\bar{f}}|$$

- Need polarization information if u does not decay \bullet $\sigma_{\rm pol}(\zeta) = \sigma_{\rm unpol} \left(1 + P_L^+ P_L^- + P_T^+ P_T^- \left[\frac{(b_1^{H\mu\mu})}{(b_1^{H\mu\mu})} \right] \right)$
- Possible to measure at the LHC: tt, ττ

$$(\frac{b^{\mu\mu}}{a^{\mu}})^2 - (b^{H\mu\mu}_2)^2 \cos \zeta - \frac{2b^{H\mu\mu}_1 b^{H\mu\mu}_2}{(b^{H\mu\mu}_1)^2 + (b^{H\mu\mu}_2)^2} \sin \zeta \bigg] \bigg),$$

arXiv: 2205.07715 **Snowmass 2022 report**

Htt measurement with ttH

ttH: fourth production xsec of the Higgs at the LHC

tH: small xsec due to negative interference

Htt measurement with ttH

-0.5

-1

Htt measurement with ttH

PRL 125 (2020) 061801

ttH→ multilepton

138 fb⁻¹ (13 TeV) → Multilepton $H \rightarrow Multilepton/\gamma\gamma/ZZ$ SM expected 0.5 1.5 0 K_t

H→ bb

JHEP 07 (2023) 092

CMS-PAS-HIG-19-011

Machine learning techniques

fCP < 0.28

3.7 σ exclusion of pure CP-odd

Htt measurement, with ggH

H

Observation

jet $\rightarrow \tau_h$ mis-ID

Uncertainty

ττ bkg.

Others

 \overline{q}

0.5

Htt measurement, with ggH

ggH fa3 < 0.09 (0.9)

ggH + ttH

19

JHEP 06 (2022) 012

 $f_{CP} < 0.43$ CP odd excluded at 3σ

τ decay plane angle

Projected precision

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$
E (GeV)	14,000	$14,\!000$	100,000	250	350	500	$1,\!000$	$1,\!300$	125	125	3,000
${\cal L}~({ m fb}^{-1})$	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000
$Htar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark		_	\checkmark
H au au	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	_	\checkmark	\checkmark	\checkmark
$H\mu\mu$	_	_	_	_	_	_	_	_	_	\checkmark	_

20

arXiv: 2205.07715 **Snowmass 2022 report**

- A rich program at the CMS probing CPV in the Higgs sector
- Reaching 10% mixture requires more data and new techniques

