Recent ATLAS Measurements Testing Higgs CP Properties

Haichen Wang UC Berkeley and LBNL

FIND CP Violation and Electroweak Scale and Beyond Workshop

August 26 2023

Introduction

For any fundamental interaction, the ability to preserve or alter the Charge-Conjugation-Parity quantum number of a physical system is a key property of that interaction

With the discovery of the Higgs boson, we are presented the opportunity to study the CP properties of two types of new interactions:

Higgs interactions with fermions \rightarrow Higgs Yukawa interactions Higgs interactions with gauge bosons \rightarrow Higgs gauge boson interactions

In the Standard Model, these interactions are CP even; however, beyond the SM physics may introduce a non-zero CP-odd component

I will present a summary of published measurements from the ATLAS experiments

Outline

- General comments on measurable effects and analysis strategies for CP measurements
- Higgs Yukawa interactions
 - Parameterization of CP properties of the Yukawa interactions
 - Relevant collider processes
 - Representative measurements from ATLAS
- Higgs-gauge boson interactions
 - Parameterization of CP properties of gauge interactions
 - Relevant collider processes
 - Representative measurements from ATLAS
- Concluding remarks

Observable effects of CP properties

Event rates

Final state kinematics

The presence of CP-odd Higgs Dijet opening angle, Higgs p_T, interactions alters Higgs etc. production and decay rates

Example: cross section variation for ttH, tH, and ggF processes as a function of t-H CP mixing angle

Optimal Observable

ATLAS Simulation

115 GeV < m, < 130 GeV

Example: Optimal

leptons decay

Observable built from

matrix elements for $H \rightarrow 4$

H→ZZ*→4I

√s = 13 TeV

unit area

Normalized to

BSM/SM

0.14

0.08F

0.06

0.04

0.02

20 1

0.1

Based on matrix element when final state is reconstructible

•••ggF, c _ = 1.5

ggF, c __ = -1.5

00^CHB

ggF SM

Multivariate Observable

Use machine learning to capture differences between CP-even and CP-odd samples

Example: A Boosted Decision Tree trained by ATLAS to separate CP-even and CP-odd ttH events

Rate-based analysis can be used to exclude different CP scenarios CP-observables are needed to establish CP-odd or CP-mix scenarios

Analysis Strategies

Dedicated CP analyses

Directly test CP hypotheses (even, odd, mix) against data using reco-level CP sensitive observables

Design of analysis is explicitly exploiting CP predictions

CP interpretation as part of a Simplified Template Cross Section (STXS) or differential cross section measurements Test CP hypotheses against differentially measured CP observables

Measurements designed without explicit CP-related model assumptions

CP properties of Yukawa couplings

 In the SM, the Yukawa interactions are CP-even. In BSM scenarios, a CP-odd component can arise at the tree-level, and therefore, a generic Higgs-fermion Yukawa interaction can be parameterized as

$$A(H\mathrm{ff}) = -rac{m_\mathrm{f}}{v} ar{\psi}_\mathrm{f}(\kappa_\mathrm{f} + \mathrm{i} ar{\kappa}_\mathrm{f} \gamma_5) \psi_\mathrm{f}$$

- The real and imaginary parts are the CP-even and CP-odd components, respectively
- k_f and k_f are the coupling strength modifiers for the even and odd components, respectively. For the SM, $k_f = 1$, and $k_f = 0$
- In CMS results, they also report the CP-odd fraction f_{CP}^{Hff} and mixing angle α^{Hff}

$$f_{\rm CP}^{\rm Hff} = \frac{|\widetilde{\kappa}_{\rm f}|^2}{|\kappa_{\rm f}|^2 + |\widetilde{\kappa}_{\rm f}|^2} \operatorname{sgn}\left(\frac{\widetilde{\kappa}_{\rm f}}{\kappa_{\rm f}}\right)$$

$$\alpha^{\mathrm{Hff}} = \tan^{-1}\left(\frac{\widetilde{\kappa}_{\mathrm{f}}}{\kappa_{\mathrm{f}}}\right)$$

• In ATLAS ttH/tH CP paper, we have

$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$

Relevant processes in the Higgs sector

- ggH and H → γγ loop induced processes, sensitive to top-Yukawa. The observable effect is primarily rate. But for ggH, possible effects also include Higgs pT , off-shell rate, and jet kinematics
- ttH/tH provide direct access to top-Yukawa, observable effects include rate and kinematics
- Other processes that may be complementary for top-Yukawa CP include four-top, ttbar production (thru. EW corrections)
- H → TT decay provides access to tau-Yukawa CP, because tau decays allow us to analyze the tau polarization
- CP effects on bottom-Yukawa induced processes are extremely hard to observe
 - Spin correlation not preserved in the b-hadronization
 - CP effects in production such as bbH, bH are too small (related to mass)
- $H \rightarrow \mu\mu$ perhaps impossible

A caveat

- There are constraints on the CP properties of the fermion-Higgs interaction, particularly on top-Yukawa, from low energy experiments (ACME II)
 - The non-observation of Electron Electric Dipole Moment (EDM) put stringent constraints on the top-Yukawa coupling, and so do neutron EDM measurements.
 - However, it assumes the Higgs-electron coupling is SM and there are no other cancellations
 - These assumptions, while motivated, cannot be verified experimentally. If the Higgs-electron coupling is much weaker than the SM or there's some cancellation due to BSM particles, the ACME II result would not be relevant to top-Yukawa CP study
- Low energy experiment investigations are well motivated but are not within the scope of this talk

τ -H CP with H $\rightarrow \tau \tau$

- In the H \rightarrow TT decay, the CP property of the tau-Yukawa interaction is passed to the tau leptons
 - This information is preserved through spin correlation Ο
 - The observable is the $\phi_{\rm CP}$, the angle between tau decay planes Ο
 - A non-zero CP mixing angle results in a phase shift in ϕ_{CP} Ο

- Reconstruction of ϕ_{CP} is challenging
 - $\phi_{_{CP}}$ is defined in the Higgs rest frame, experimentally, it's approximated as the Zero Ο **Momentum Frame**
 - Depending on tau decay topologies, different methods are used to calculate ϕ_{cn} Ο

HIGG-2019-10

τ -H CP with H $\rightarrow \tau\tau$: two dimensional analysis

- Several signal-vs-background MVA classifiers were trained
- Final fit is performed in two dimensional SRs

The observed (expected) value of $\varphi \tau$ is 9°±16° (0°±28°) at the 68% confidence level (CL), and ± 34° (-70°+75°) at the 2 σ level. The CP-odd hypothesis is rejected at the 3.4 σ (2.1 σ expected) level.

HIGG-2019-10

top-H CP with $H \rightarrow \gamma \gamma$

The analysis focuses on *ttH-like events*

- It used two BDTs to suppress background in the leptonic and hadronic channels
- A CP BDT is trained to separate CP even and CP odd hypotheses
- CP tests are based on simultaneous fits to m_{yy} distributions categorized by S-vs-B and CP BDTs

ttH and tH yields are parameterized as a function of CP parameters ATLAS ttH/tH $\rightarrow \gamma\gamma$ 95% CL limit $|\alpha| < 43^{\circ}$ obs. (56° exp.)

HIGG-2019-01

One more example on top-H CP through VBF-like ggH, $H \rightarrow WW$

The CP properties of the top-Higgs Yukawa interaction can also be probed through the *VBF-like* **gluon fusion** process, where top quarks mediate the production of the Higgs

Analysis was done with partial Run-2 data, not yet competitive, included here for the sake of completeness

Gauge Interaction CP Test Overview

The most general tensor structure of a Higgs-gauge boson interaction could be parameterized as

$$\begin{aligned} T^{\mu\nu}(q_1,q_2) &= a_1(q_1,q_2) \ g^{\mu\nu} \\ &+ a_2(q_1,q_2) \ [q_1 \cdot q_2 g^{\mu\nu} - q_1^{\mu} q_2^{\nu}] \\ &+ a_3(q_1,q_2) \ \epsilon^{\mu\nu\alpha\beta} q_{1,\alpha} q_{2,\beta} \end{aligned}$$

a₁ scales SM (CP-even) term a₂ scales BSM CP-even term a₃ scales BSM CP-odd term

Les Houches 2019 Report

ATLAS interpretation uses EFT framework

- Dimension-6 operators, i.e. higher orders than SM, suppressed by $1/\Lambda^2$
- Warsaw basis: Wilson coefficients (WC) for CP-odd interactions C_{HW~}, C_{HR~}, C_{HW~R}
- Higgs basis, CP-odd WCs: $\tilde{c}_{zy}, \tilde{c}_{yy}, \tilde{c}_{zz}$

These two representations are equivalent and can be translated from one to another. See link

Credit: link

Vector Boson Fusion (VBF)

• $V_3V_4 \rightarrow H$

H to four fermion decays: H \rightarrow WW and H \rightarrow ZZ

• $H \to V_1 V_2 \to f_{11} f_{12} f_{21} f_{22}$

Associated Production with a Vector Boson (VH) • $V_3H \rightarrow V_4H (\rightarrow V_1V_2)$

$H \to ZZ \to 4I~$ CP analysis

BSM/SM

Matrix elements are functions of final state particle four vectors

- The $H \rightarrow ZZ \rightarrow 4l$ decay provides rich info. to constrain the H-V CP property
 - Four leptons → *decay level* OO
- The *VBF production* also provides additional constraint on H-V CP property
 - Jets, 4l-system → *production level* **OO**

	5		• 1	
parameter	68% CL	95% CL		
$c_{H\widetilde{B}}$	[-0.42, 0.31]	[-0.61, 0.54]	decay	
$C_{H\widetilde{W}B}$	[-0.56, 0.53]	[-0.97, 0.98]	decay	
$c_{H\widetilde{W}}$	[-0.07, 1.09]	[-0.81, 1.54]	comb	
VCs measur	16			
issumed to l	be zero			

 $C_{H\tilde{W}B}$

 $lin_{.}$ + quad.

Same assumption as prev. slide used here.

17

[-1.2, 1.1]

H-V CP with VBF H $\rightarrow \gamma \gamma$

HIGG-2020-08

The analysis focuses on *VBF-like events*

- It used two BDTs to suppress continuum and gluon fusion background
- Events are separated into different categories using these BDTs; lowest scored events are discarded

Optimal Observable as the discriminant

- Events are further categorized using the OO based on four-vectors of jets and Higgs
- Simultaneous fit to these categories based on BDT values and OO values to constrain CP parameters (cHW~)

95% (exp.)

[-0.94, 0.94]

95% (obs.)

Summary

ATLAS is carrying out an active physics program that tests the Higgs CP properties

- Exploit all the major production and decay modes
- Cover both Yukawa and gauge interactions
- Use complementary analysis strategies and a variety of CP-sensitive variables

		$H \to \gamma \gamma$	$H \rightarrow ZZ$	$H \rightarrow WW$	$H \rightarrow \tau \tau$	$H \rightarrow bb$
Reference table ⇒	ggH		H-V Published <u>OO</u>	H-t Published <u>∆φ_{;j}</u>	H-τ Published <u>Decay angle</u>	
Color code nteraction tested Status Observable with reference link	VBF	H-V Published <u>OO</u>	H-V Published <u>OO</u>	H-V Published <u>Δφ</u> _{jj}	H-V Published <u>OO</u>	
	ttH/ tH	H-top Published <u>MVA</u>	H-top Published <u>OO</u>			H-top Published <u>b2/b4/rate</u>