

Measurement of inclusive J/ ψ and ψ (2S) production at midrapidity in pp collisions at 13.6 TeV with ALICE

Yuan Zhang (张原)

University of Science and Technology of China

CLHCP 2024

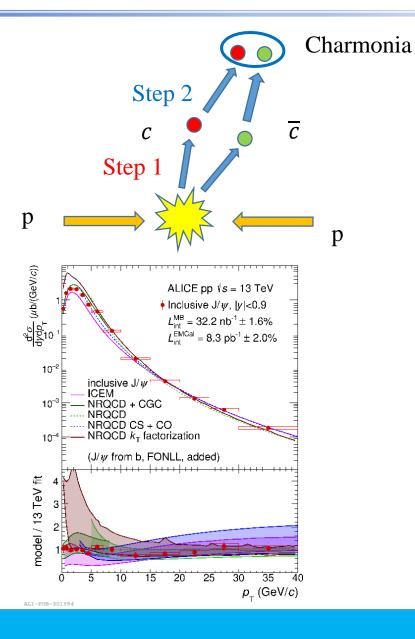
Qingdao, Shandong

Introduction

≻Charmonia:

▶ Bound states of charm and anti-charm quark pairs.

Crucial for studying charmonium production mechanisms and testing different QCD-based models.

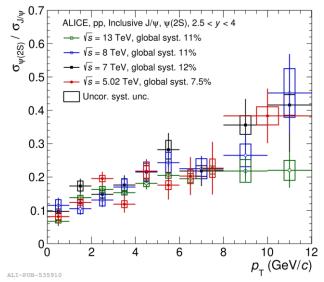

- Heavy-quark production (perturbative QCD)
- Formation of the charmonium states (non-perturbative QCD)

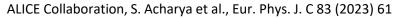
NRQCD:

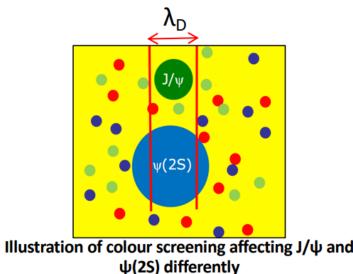
$$(2\pi)^{3}2P_{H}^{0}\frac{d\sigma_{H}}{d^{3}P_{H}} = \sum_{n} d\hat{\sigma}_{n}(P_{H})\langle \mathcal{O}_{n}^{H} \rangle$$
Production of a heavy quark pair
Expansion in: α_{s}
Hadronization (LDMEs)
Expansion in: ν

ICEM:

$$\frac{d\sigma_{\psi}(P)}{d^3P} = F_{\psi} \int_{M_{\psi}}^{2M_D} d^3P' dM \frac{d\sigma_{c\bar{c}}(M,P')}{dMd^3P'} \delta^3(P - \frac{M_{\psi}}{M}P')$$

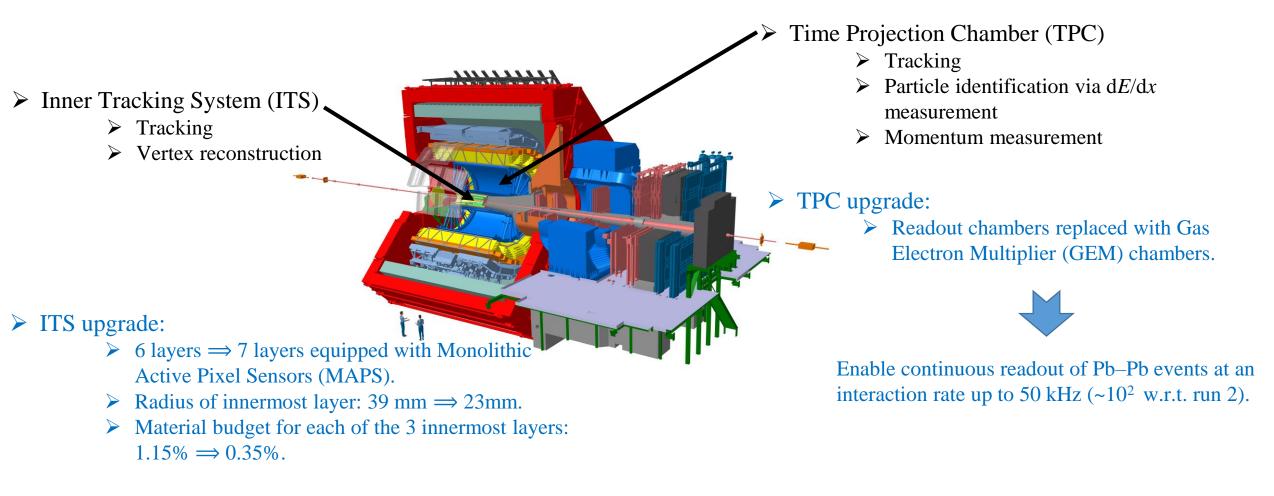


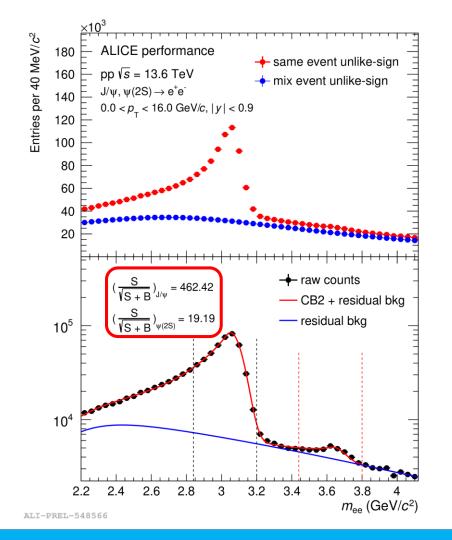

yuanz@cern.ch


Introduction

≻Charmonia:

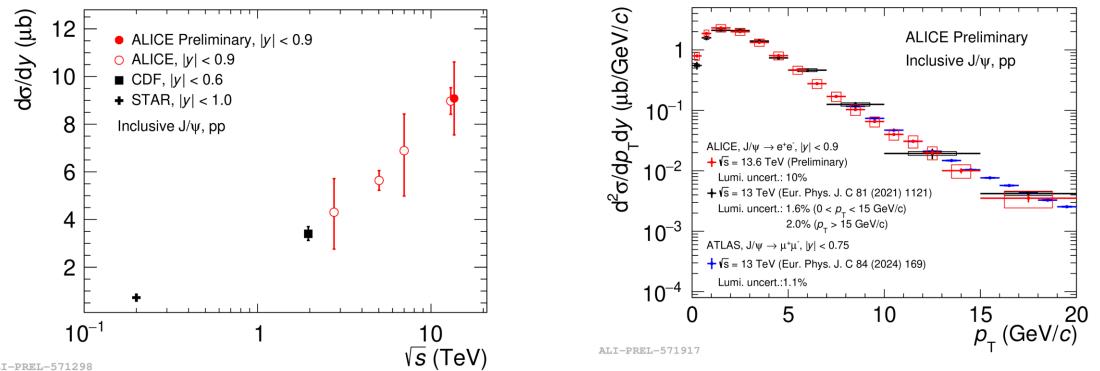
- ≻ Bound states of charm and anti-charm quark pairs.
- Crucial for studying charmonium production mechanisms and testing different QCD-based models.
 - Heavy-quark production (perturbative QCD)
 - ➢ Formation of the charmonium states (non-perturbative QCD)
- Study the rapidity and energy dependence of charmonium production by comparing to similar measurements.
- > Used as reference for studying AA collisions.
 - > The $\psi(2S)$ -to-J/ ψ ratio has not been measured at midrapidity in ALICE




ALICE detector Run 3 upgrade

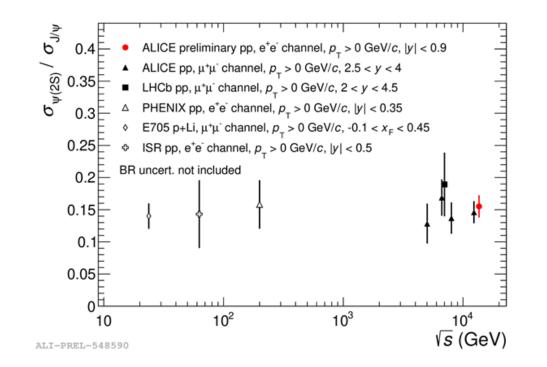
> Uniform acceptance at midrapidity (|y| < 0.9) and good PID for electrons.

Data analysis procedure

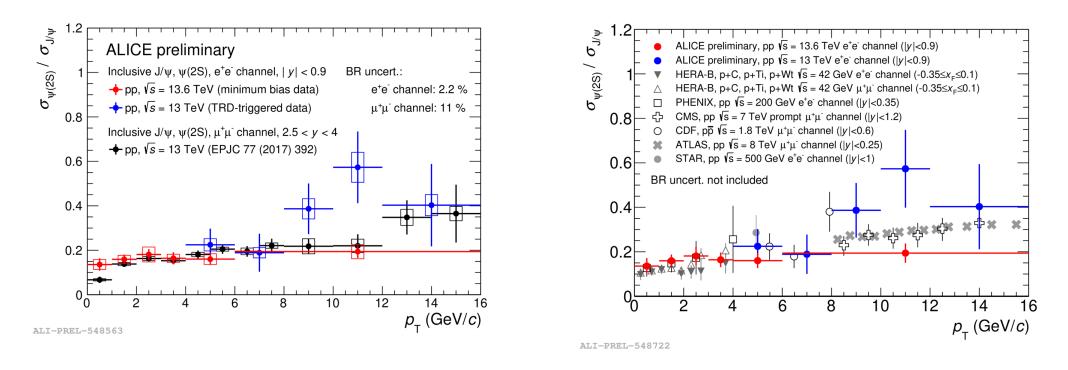

> Inclusive quarkonia are reconstructed in e^+e^- channel at midrapidity (|y| < 0.9) down to $p_T = 0$.

➤ Dataset:

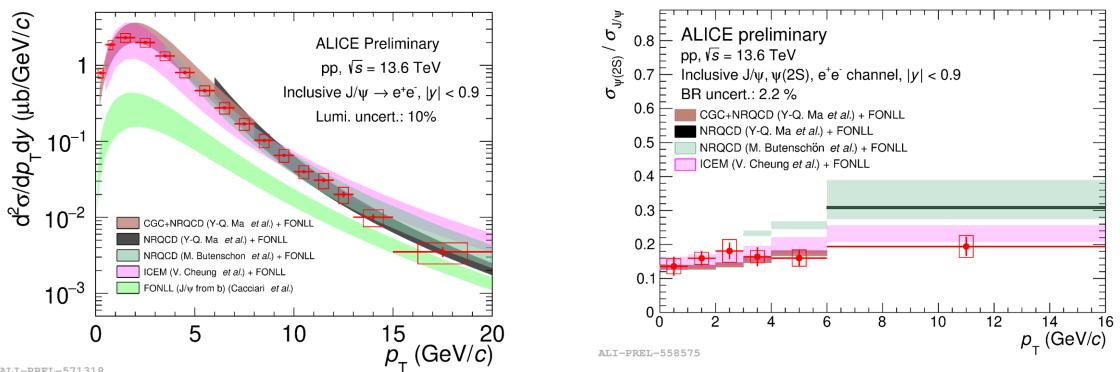
- ➢ pp collisions at \sqrt{s} = 13.6 TeV collected in 2022 with the ALICE upgraded detector.
- > 524×10^9 minimum-bias (MB) events used in this analysis thanks to the continuous readout.
- Electron identification via TPC dE/dx.
- Signal extraction:
 - Signal shapes are described by two Crystal Ball functions.
 Possible differences between the J/ψ and ψ(2S) shapes are assigned as systematic uncertainties.
- The significance of J/ψ is about 462 and the significance of $\psi(2S)$ reach to nearly 20.


J/ψ cross section

ALI-PREL-571298


- \blacktriangleright The $p_{\rm T}$ integrated J/ ψ cross section is 9.08 \pm 0.046 (stat.) \pm 1.23 (syst.) \pm 0.91 (Lumi.)
- > This results (red point) are shown together with existing results at different and similar collision energy from ALICE and other experiments.
 - \succ The $p_{\rm T}$ integrated cross section increases with collision energy.
 - \triangleright $p_{\rm T}$ differential cross section are in consistent with results at similar collision energy.

 $\psi(2S)$ -to-J/ ψ ratio


- The measured p_T-integrated ratio without BR uncertainty is 0.155 ±0.010(stat.) ±0.014(syst.)
 Large fraction of systematic uncertainty are canceled out by taking ratio.
- The result (red point) is shown together with existing results from ALICE at forward rapidity and from other experiments.
 - > The uncertainty is reduced because of the improvement of statistics.
 - ➢ No significant energy and rapidity dependence.

$\psi(2S)$ -to-J/ ψ ratio

- The results (red points) are shown together with existing results from ALICE at forward rapidity and from other experiments.
 - \succ In agreement with other results.
 - > No significant rapidity dependence.
 - Slight $p_{\rm T}$ dependence (also expected from models).

Comparison with models

ALI-PREL-571318

- Comparison with models (FONLL is used to describe the non-prompt contribution): \succ
 - \blacktriangleright Both of the NRQCD and ICEM can describe the cross section of J/ ψ .
 - NRQCD overestimates the ratio.
 - CGC + NRQCD describes the ratio at low $p_{\rm T}$ up to 6 GeV/c. \succ
 - ICEM can reproduce the data.

Conclusion

$> J/\psi$ cross section is measured in pp collision at $\sqrt{s} = 13.6$ TeV at midrapidity.

 $> p_{\rm T}$ integrated result shows a dependence on the collision energy.

 $\succ p_{\rm T}$ differential distribution are similar with results at similar collision energy.

≻Comparison with models.

>Both ICEM and NRQCD can describe the $p_{\rm T}$ distribution within uncertainties.

> First measurement of the $\psi(2S)$ -to-J/ ψ ratio in pp collision at $\sqrt{s} = 13.6$ TeV at midrapidity.

≻Precision is improved thanks to the improved statistic of Run 3.

>No significant energy and rapidity dependence, a slight $p_{\rm T}$ dependence is observed.

Comparison with models.

>NRQCD overestimates the ratio.

>CGC + NRQCD describes the ratio at low and intermediate $p_{\rm T}$.

≻ICEM can reproduce the data.

Provides a reference for investigating the quark-gluon plasma in nucleus-nucleus collisions and the cold nuclear matter effects in proton-nucleus collisions.

Thank you

Back up

Back up

The two NLO NRQCD calculations from Butenschon and from Ma differ in the parametrization of the Long Distance Matrix Elements(LDME) used to calculate the color-octet contributions

to the charmonium production cross section.

$$\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi}} = \frac{N_{\psi(2S)}}{N_{J/\psi}} \frac{(A \times \varepsilon)_{J/\psi}}{(A \times \varepsilon)_{\psi(2S)}} \frac{BR_{J/\psi \to ee}}{BR_{\psi(2S) \to ee}}$$