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The scale of things 
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The stone age – mastering all things stone and bone

3.3 Million Years
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The metals age – mastering all things metal

5000 Years
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Expanding the horizon with new tools
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Exploring the nature by

~1600

Electrons in quantum materials



Cartoon Physics
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Nucleus

Electron

Mass of proton = 1.67 x 10-27 kg
Mass of neutron = 1.67 x 10-27 kg

The atom

Mass of electron = 9.1 x 10-31 kg
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Electron energy levels
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Electron orbitals
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Chain of atoms

Electron “cloud”

Which atom does an 
electron here belong to?
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What about here?
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Electronic state

Y(E, k)

Road map of electrons
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Can we really see the electron energy bands ?
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Angle-Resolved 
Photoemission Spectroscopy
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Angle-Resolved 
Photoemission 
Spectroscopy
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Example: 
Understanding quantum 
phenomena from electron 
energy band

Part I



Angle-Resolved 
Photoemission 
Spectroscopy
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Example: 
Understanding quantum 
phenomena from electron 
energy band

Part I
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Electron detector

Crystal

Angle-Resolved Photoemission Spectroscopy (ARPES)
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The Nobel Prize 

in Physics 1921

The law of The Photoelectric Effect

Energy Conservation:     EB= hn -Ekin-F

Momentum Conservation: K|| = k||+ G|| 

Electronic state in solid:

Y(EB, k||)

Photoemitted electrons

Kinetic Energy: Ekin

Momentum: K
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ISIT
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State-of-the-art ARPES systems
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Synchrotron ARPES Laser ARPES



Part I

Angle-Resolved 
Photoemission 
Spectroscopy
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Example: 
Understanding quantum 
phenomena from electron 
energy band



x 750,000 = 

Example: extreme magnetoresistance

Magnetoresistance

Giant magnetoresistance
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Extreme magnetoresistance 

Resistance increases under magnetic filed

Origin? Better materials



Origin of extreme magnetoresistance --- breaking topological protection ?
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Low resistance

magnetic field

Topological Protection

Resistance increases



How to experimentally measure It?
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Topological Protection

Topologically non-trivial
electronic states
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Experiment  --- breaking topological protection ?
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Topological Protection

Topologically non-trivial
electronic states

Junfeng He et al., 
Physical Review Letters 117, 267201 (2016)

YSb

Extreme magnetoresistance 



Summary
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➢ Breaking of the topological protection is NOT a must for 
extreme magnetoresistance.

➢ Materials with extreme magnetoresistance do not have to 
be topological materials.



Summary of part I

Angle-Resolved Photoemission 
Spectroscopy
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➢ Yes, we see the electron 
energy band using the new 
tool!

➢ We understand an interesting 
quantum phenomenon from 
electron energy band.



Part II
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Let’s consider more complicated systems



O

H

H

Water molecule

El Niño

x 1046

Neuron

Brain activity

x 1011

Ant

Ant colony

x 108

“More is different”



Electron energy band

Momentum (p)

Energy (E)

E = p2/2m



momentum

energy

2π/a-2π/a

a

Electrons in a solid
Electrons in periodic lattice



energy

momentum

Electrons in a solid

Non-interacting Fermi gas Weakly-interacting Fermi liquid

3Hedoped silicon

momentum

energy

Interactions



Strongly interacting (correlated) electrons

Y. Gao et al., Energy Environ. Sci. 5, 6104 (2012)

Smart window

Strong electron-electron interactions



Discovering and understanding quantum phenomena in strongly correlated systems

Angle-Resolved Photoemission 
Spectroscopy
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Electron bands in 3D

Electrons moving in a plane
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How to read the 3D “Map”?
En

e
rg

y

Momentum Space

0

Fermi Surface (FS)

Kx

Ky

FS area
En

e
rg

y

Kx

Electron Band
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Example: first observation of negative electronic compressibility 
in a correlated bulk material
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Electronic Compressibility: e = (
1

n2
)(
𝜕n

𝜕m
), (n is the 

carrier density and m is the chemical potential)

Adding 
electrons

Adding 
electrons



Example: negative electronic compressibility 
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Junfeng He et al., Scientific Reports 5, 8533 (2015)

Junfeng He et al., Nature Materials 14, 577-582 (2015)

Chemical Potential m

Dm/Dn<0 ? 

Dm/Dn<0

Carrier Density n

Fermi Surface (FS)

Kx

Ky

FS area



What’s the origin?
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Junfeng He et al., 
Nature Materials 14, 577-582 (2015)

❑ Observed the first example of 
correlation induced negative electronic 
compressibility (NEC) in bulk materials

❑ Due to the reduced correlation gap
En

er
gy

Doping

Adding 
electrons

Adding 
electrons



Summary of Part II
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➢ We observed a new quantum phenomenon

➢ We figured out that this phenomenon is induced by strong correlation



Part III
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Lattice at play



Electron-phonon interactions

superconductivity



Superconductivity
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expulsion of magnetic fieldzero electrical resistance

Electric power transmission High-speed rail



Phonon mediated superconductivity



Ingredient 1:
Pairing energy Δ

2Δ/kBTc = 3-5

Collective lattice vibration 
– phonons

Phonon mediated superconductivity



Heavier isotope 
– weaker vibration 
– lower Tc

Collective lattice vibration 
– phonons

Ingredient 1: 
Pairing energy Δ

Phonon mediated superconductivity



Ingredient 1: 
Pairing energy Δ

Ingredient 2:
Global phase coherence eiθ

Phonon mediated superconductivity



momentum

energy

2π/a-2π/a

Superconductivity in energy-momentum space



T < Tc

Energy (E)

Momentum (k)

± E0(k)2 + Δ2

2Δ

Particle-hole symmetry

Energy (E)

Momentum (k)

E0(k)

Fermi level EF

T > Tc

Fermi momentum kF

Energy (E)

Energy (E)

2Δ

Superconductivity in energy-momentum space



Is this the end of the story?



High Tc superconductivity
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expulsion of magnetic fieldzero electrical resistance
superconductor

Superconducting transition 
Temperature (Tc) is too low

Electric power transmission High-speed rail
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Superconducting transition temperature (Tc) VS time 

Two events in the past century 



What’s the origin? 

➢ Electron-electron interaction?

➢ Electron-boson coupling (e.g. electron-phonon coupling)? 



What’s the origin? 

➢ Electron-electron interaction?

➢ Electron-boson coupling (e.g. electron-phonon coupling)? 



Observation of electron-boson coupling and a long-standing puzzle
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~70meV nodal kink ~40meV antinodal kink

The different energy scales lead to a long-standing 
puzzle about their relationship

Electron-Boson Coupling

Phys. Rev. Lett.  85, 2581 (2000) 
Nature (London) 423, 398 (2003) etc.

What happens in between

Do they belong to the same mode?

Ashcroft-Mermin, Solid State Physics

Dispersion Kink

Phys. Rev. B 68, 174520 (2003)



Resolving a long-standing puzzle in high temperature superconductors
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Junfeng He et al.,  Physical Review Letters 111, 107005 (2013) 

Laser ARPES

~70meV & ~40meV

Simulation: 

two modes

Coexistence of 

Two Energy Scales



Momentum dependence of the two energy scales
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Junfeng He et al.,  Physical Review Letters 111, 107005 (2013) 

What happens in between?
Do they belong to the same mode?

➢ Two energy scales coexist from nodal 
region to anti-nodal region 

➢ High energy mode stays at ~70meV, Low 

energy mode decreases from ~70meV to 

~40meV 

High

Low



Electron-electron correlation, electron-phonon coupling and superconductivity 

Y. He..J.-F. He et al., Science 362, 62 (2018).



Electron-boson coupling in a similar system

Y. Hu et al., J.-F. He*, Physical Review Letters 123, 216402 (2019).

Electron-doped Sr2IrO4



Part IV
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Manipulating electronic states in quantum materials 

Floating zoneMBE

Thin Film Bulk Crystal



Single-layer FeSe film grown on SrTiO3 (STO)
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Q. Wang & Q.-K. Xue et al.,
Chin. Phys. Lett. 29, 037402 (2012)

Single-layer FeSe

SrTiO3 Substrate

Molecular Beam Epitaxy (MBE)

Is it superconducting? 



Junfeng He*, et al, Nature Communications (2012), Nature Materials (2013), PNAS (2014), Nature Communications (2014)

70

60

50

40

30

20

10

0

T c
 (

k)

Single-Layer FeSe/STO

Bulk FeSe Crystal

Enhance superconducting transition temperature



Floating zone: single crystal growth
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Key for successful growth: keep the melting zone in a good shape 
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Too small -- break

Too big -- drop

❖ Hard to find out the optimal growth 
parameters

❖ Continuous monitoring of the 
growth (2~4 weeks)

❖ Heavily depends on the experience

Let the machine do the job!



Outlook
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Manipulating the many-body effects in quantum materials

Interplay of Multiple
Physics Components

Charge

Spin

Lattice

Orbital

State-of-Art Experimental Tools
ARPES
X-ray scattering
etc.

• Superconductivity

• Extreme magnetoresistance

• Negative electronic 

compressibility

• Metal-insulator transition

• Low dimensional materials 

• … …

• superconducting 

magnet

• Memory devices

• Low power IC

• selector device

• Displays

• … …

Extreme Properties Functional Materials

Advanced Material Growth
MBE
Floating zone growth
etc.

Mastering Quantum 
Materials



Thank you!


