

Unveiling Electronic States in Quantum Materials --- ARPES

Junfeng He

University of Science and Technology of China

The scale of things

Physics & Astronomy

The stone age – mastering all things stone and bone

3.3 Million Years

The metals age – mastering all things metal

5000 Years

Expanding the horizon with new tools

Cartoon Physics

The atom

Electron energy levels

Electron orbitals

Chain of atoms

Energy bands

Chemical potential– $\boldsymbol{\mu}$

Can we really see the electron energy bands?

New Tools

Angle-Resolved Photoemission Spectroscopy

Momentum

Part I

Angle-Resolved Photoemission Spectroscopy

Example:

Understanding quantum phenomena from *electron energy band*

Part I

Angle-Resolved Photoemission Spectroscopy

Example:

Understanding quantum phenomena from *electron energy band*

Angle-Resolved Photoemission Spectroscopy (ARPES)

Synchrotron ARPES

Laser ARPES

Example:

Understanding quantum phenomena from *electron energy band*

Magnetoresistance

Resistance increases under magnetic filed

Giant magnetoresistance

x 750,000 =

Extreme magnetoresistance

Origin of extreme magnetoresistance --- breaking topological protection ?

Topological Protection

Low resistance

Resistance increases

How to experimentally measure It?

Experiment --- breaking topological protection ?

YSb

Extreme magnetoresistance

Topological Protection

Topologically non-trivial electronic states

Junfeng He *et al.,* Physical Review Letters 117, 267201 (2016) Breaking of the topological protection is NOT a must for extreme magnetoresistance.

Materials with extreme magnetoresistance do not have to be topological materials.

Summary of part I

Angle-Resolved Photoemission Spectroscopy

- Yes, we see the electron energy band using the new tool!
- We understand an interesting quantum phenomenon from electron energy band.

Let's consider more complicated systems

"More is different"

Electron energy band

Momentum (p)

Electrons in periodic lattice

Interactions

Non-interacting Fermi gas

$$E = E_0 + \sum_{\vec{k},\sigma} \epsilon_{\sigma}(\vec{k}) \delta n_{\sigma}(\vec{k})$$

Weakly-interacting Fermi liquid

$$+ \frac{1}{2\Omega} \sum_{\vec{k}\,,\,\vec{k}\,'} \sum_{\sigma,\sigma'} f_{\sigma\sigma'}(\vec{k}\,,\,\vec{k}\,') \delta n_{\sigma}(\vec{k}\,) \delta n_{\sigma'}(\vec{k}\,')$$

Strong electron-electron interactions

Y. Gao et al., Energy Environ. Sci. 5, 6104 (2012)

Discovering and understanding quantum phenomena in strongly correlated systems

Angle-Resolved Photoemission Spectroscopy

Electron bands in 3D

Example: first observation of negative electronic compressibility in a correlated bulk material

Electronic Compressibility: $\chi_e = (\frac{1}{n^2})(\frac{\partial n}{\partial \mu})$, (n is the carrier density and μ is the chemical potential)

Example: negative electronic compressibility

Electron-doped iridate: $(Sr_{1-x}La_x)_3Ir_2O_7$ $\Delta \mu / \Delta n < 0$? Chemical Potential µ Carrier Density n Electron density (x10²⁰cm⁻³) ب Electron density (×10²⁰ cm⁻³) Fermi Surface (FS) (π,π) 5 FS area Ку Γ(0,0) **Carrier** Density **∽ Kx**∣ -80 Doping -1200.03 0.05 0.07 0.09 Doping level x Junfeng He et al., Nature Materials 14, 577-582 (2015) $\Delta \mu / \Delta n < 0$ Junfeng He et al., Scientific Reports 5, 8533 (2015)

Observed the first example of correlation induced negative electronic compressibility (NEC) in bulk materials Due to the reduced correlation gap

Junfeng He *et al.,* Nature Materials 14, 577-582 (2015)

> We observed a new quantum phenomenon

> We figured out that this phenomenon is induced by strong correlation

Lattice at play

Electron-phonon interactions

superconductivity

Electric power transmission

High-speed rail

в

 $T < T_{C}$

Ingredient 1: Pairing energy Δ

Collective lattice vibration – phonons

Heavier isotope

- weaker vibration
- lower T_c

Ingredient 1: Pairing energy ∆

Ingredient 2: Global phase coherence $e^{i\theta}$

Superconductivity in energy-momentum space

Superconductivity in energy-momentum space

Is this the end of the story?

High Tc superconductivity

superconductor

zero electrical resistance expulsion of magnetic field

Superconducting transition Temperature (Tc) is too low

Electric power transmission

High-speed rail

Superconducting transition temperature (Tc) VS time

Two events in the past century

What's the origin?

Electron-electron interaction?

Electron-boson coupling (e.g. electron-phonon coupling)?

What's the origin?

Electron-electron interaction?

Electron-boson coupling (e.g. electron-phonon coupling)?

Observation of electron-boson coupling and a long-standing puzzle

Resolving a long-standing puzzle in high temperature superconductors

57

Momentum dependence of the two energy scales

Junfeng He et al., Physical Review Letters 111, 107005 (2013)

Electron-electron correlation, electron-phonon coupling and superconductivity

Y. He..J.-F. He *et al.*, Science 362, 62 (2018).

Electron-boson coupling in a similar system

Y. Hu et al., J.-F. He*, Physical Review Letters 123, 216402 (2019).

Manipulating electronic states in quantum materials

Thin Film

MBE

Bulk Crystal

Floating zone

Q. Wang & Q.-K. Xue et al., Chin. Phys. Lett. 29, 037402 (2012)

Molecular Beam Epitaxy (MBE)

Enhance superconducting transition temperature

Junfeng He*, et al, Nature Communications (2012), Nature Materials (2013), PNAS (2014), Nature Communications (2014)

Floating zone: single crystal growth

Key for successful growth: keep the melting zone in a good shape

Too small -- break

Too big -- drop

- Hard to find out the optimal growth parameters
- Continuous monitoring of the growth (2~4 weeks)
- Heavily depends on the experience

Let the machine do the job!

Outlook

Spin Orbital

State-of-Art Experimental Tools ARPES X-ray scattering

etc.

Manipulating the many-body effects in quantum materials Extreme Properties Functional Materials

- Superconductivity
- Extreme magnetoresistance
- Negative electronic compressibility

... ...

- Metal-insulator transition
- Low dimensional materials

superconducting magnet

- Memory devices
- Low power IC
- selector device
- Displays

... ...

Advanced Material Growth MBE Floating zone growth etc.

Mastering Quantum Materials

Thank you!