第一届Lambda超子自旋极化跨系统研讨会

北京谱仪上Lambda超子自旋极 化理论进展

Jia-Jun Wu (UCAS) Collaborator: Shu-Ming Wu, Bing-Song Zou

Phys. Rev. D 104 (2021) 5, 054018

第一届Lambda超子自旋极化跨系统研讨会

2025.03.22.

合肥,中科大

Content

- 现状和问题
- •利用L-S scheme方法抽取 $\psi \rightarrow \overline{B}B$ 过程的L
- 衰变的有效半径
- 小结

nature physics

Explore content 🗸	About the journal ∨	Publish with us 🗡	Subscribe
-------------------	---------------------	-------------------	-----------

<u>nature</u> > <u>nature physics</u> > <u>letters</u> > article

Letter | Published: 06 May 2019

Polarization and entanglement in baryon–antibaryon pair production in electron–positron annihilation

The BESIII Collaboration

Nature Physics 15, 631–634 (2019) Cite this article

7492 Accesses | 139 Citations | 64 Altmetric | Metrics

$$e^+e^- \to J/\psi \to \Lambda \overline{\Lambda} \to p\pi^- \,\overline{p}\pi^+ / \, p\pi^- \overline{n}\pi^0$$

$$\begin{aligned} \mathcal{W}(\boldsymbol{\xi}; \alpha_{\psi}, \Delta \Phi, \alpha_{-}, \alpha_{+}) = & 1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda} \\ & + \alpha_{-} \alpha_{+} \left[\sin^{2} \theta_{\Lambda} \left(n_{1,x} n_{2,x} - \alpha_{\psi} n_{1,y} n_{2,y} \right) + \left(\cos^{2} \theta_{\Lambda} + \alpha_{\psi} \right) n_{1,z} n_{2,z} \right] \\ & + \alpha_{-} \alpha_{+} \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(n_{1,x} n_{2,z} + n_{1,z} n_{2,x} \right) \\ & + \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(\alpha_{-} n_{1,y} + \alpha_{+} n_{2,y} \right), \end{aligned}$$

Parameters	This work	Previous results
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 25
$\Delta \Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 27
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 27
\bar{lpha}_0	$-0.692 \pm 0.016 \pm 0.006$	
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 27
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	

标准公式,通过末态的衰变 不抽取粒子的极化信息。

 $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda} \rightarrow p\pi^- \bar{p}\pi^+ / p\pi^- \bar{n}\pi^0$

Zhe Zhang, Rong-Gang Ping, Tianbo Liu, Jiao Jiao Song, Weihua Yang, Ya-jin Zhou PRD 110 034034(2024) $e^+e^- \rightarrow B_1\overline{B}_2$ 标准公式,通过末态的衰变 来抽取粒子的极化信息。

G. Fäldt, EPJA 52 141(2016)G. Fäldt and A. Kupsc, PLB 772 16(2017)

Johann Haidenbauer, Ulf-G. Meißner, Ling-Yun Dai

$$e^+e^- \to J/\psi \to \Lambda \overline{\Lambda} \to p\pi^- \bar{p}\pi^+ / p\pi^- \bar{n}\pi^0$$

?为什么极化是这样的? 反应的机制是什么?
如何通过极化信息抽取反应的内部信息,从而帮助我们理解强子过程
PRD 103 (2021) 1, 014028 Study the formfactor Jian-Ping Dai, Xu Cao, Horst Lenske PLB 846 138192 (2023) isospin assignment and data driven Prof. He's talk, about CP and EDM

Zhe Zhang, Rong-Gang Ping, Tianbo Liu, Jiao Jiao Song, Weihua Yang, Ya-jin Zhou PRD 110 034034(2024) $e^+e^- \rightarrow B_1\overline{B}_2$

? 为什么极化是这样的?

反应的机制是什么?

标准公式,通过末态的衰变 来抽取粒子的极化信息。

G. Fäldt, EPJA 52 141(2016)G. Fäldt and A. Kupsc, PLB 772 16(2017)

$$e^+e^- \to J/\psi \to \Lambda \overline{\Lambda} \to p\pi^- \bar{p}\pi^+ / p\pi^- \bar{n}\pi^0$$

通过极化信息了解其轨道角动量, 然后据此来了解产生端的衰变尺度

Shu-ming Wu, Jia-jun Wu, Bing-song Zou, PRD 104 (2021) 5, 054018

如何通过极化信息抽取反应的内部信息,从而帮助我们理解强子过程

$\psi \rightarrow \overline{B}(1/2-)B(1/2+) \xrightarrow{L: \text{ S and D wave}} r_{eff} \sim \frac{\overline{L}}{p}$ This is a very useful PWA tool

PHYSICAL REVIEW C 67, 015204 (2003)

Lorentz covariant orbital-spin scheme for the effective N^*NM couplings

B. S. $Zou^{1,2,3,*}$ and F. Hussain^{3,†}

$\psi \rightarrow \overline{B}(1/2-)B(1/2+) \xrightarrow{L: \text{ S and D wave}} r_{eff} \sim \frac{\overline{L}}{p}$ This is a very useful PWA tool

PHYSICAL REVIEW C 67, 015204 (2003)

Lorentz covariant orbital-spin scheme for the effective N^*NM couplings

B. S. Zou^{1,2,3,*} and F. Hussain^{3,†}

Here I mainly introduce it for $\psi \to \overline{N}N^*$ case

University of Chinese Academy of Sciences

$\psi \rightarrow \overline{B}(1/2-)B(1/2+) \xrightarrow{L: \text{ S and D wave}} r_{eff} \sim \frac{L}{p}$ This is a very useful PWA tool

PHYSICAL REVIEW C 67, 015204 (2003)

Lorentz covariant orbital-spin scheme for the effective N*NM couplings

 $\psi \to \overline{N}^* N^*$ Such as $\Sigma^* \overline{\Sigma}^*$

B. S. Zou^{1,2,3,*} and F. Hussain^{3,†}

Here I mainly introduce it for $\psi \to \overline{N}N^*$ case

Update: Recently, we propose a new method based on Group theory to write down covariant partial wave amplitudes within **L-S scheme** for three-particle vertex with any spin. And we also show that it is equivalent with usual helicity amplitude. Covariant orbital-spin scheme for any spin based on irreducible tensor#43Hao-Jie Jing (Beijing, GUCAS), Di Ben (Beijing, Inst. Theor. Phys. and Beijing, GUCAS), Shu-Ming Wu (Beijing,
GUCAS and Beijing, Inst. Theor. Phys.), Jia-Jun Wu (Beijing, GUCAS), Bing-Song Zou (Beijing, Inst. Theor. Phys.
and Central South U., Changsha) (Jan 4, 2023)

Published in: JHEP 06 (2023) 039, JHEP 06 (2023) 039 • e-Print: 2301.01575 [hep-ph]

Algorithms for partial wave amplitudes in the covariant L-S scheme

#22

Hao-Jie Jing (Beijing, GUCAS), Shu-Ming Wu (Beijing, GUCAS), Jia-Jun Wu (Beijing, GUCAS and Lanzhou, Inst. Modern Phys.) (May 10, 2024)

Published in: Phys.Rev.D 110 (2024) 1, 016014 • e-Print: 2405.06576 [hep-ph]

Method 1, using G_E^{ψ} and G_M^{ψ} , the amplitude,

$$M = -ie_{g}\bar{u}_{B}\left(G_{E}^{\psi}\gamma_{\mu} - \frac{2m_{B}}{r^{2}}\left(G_{M}^{\psi} - G_{E}^{\psi}\right)r_{\mu}\right)v_{\bar{B}}\epsilon^{\mu} \qquad \begin{array}{c} \mathbf{G}.\mathbf{I}\\ \mathbf$$

G. Fàldt, EPJA 52 141(2016)G. Fàldt and A. Kupsc, PLB 772 16(2017)

Method 1, using G_E^{ψ} and G_M^{ψ} , the amplitude,

$$M = -ie_{g}\bar{u}_{B}\left(G_{E}^{\psi}\gamma_{\mu} - \frac{2m_{B}}{r^{2}}\left(G_{M}^{\psi} - G_{E}^{\psi}\right)r_{\mu}\right)v_{\bar{B}}\epsilon^{\mu} \qquad \begin{array}{c} \mathbf{G}.\\ \mathbf{G}.$$

G. Fäldt, EPJA 52 141(2016)G. Fäldt and A. Kupsc, PLB 772 16(2017)

Method 1, using G_E^{ψ} and G_M^{ψ} , the amplitude,

 $M = -ie_{g}\bar{u}_{B}\left(G_{E}^{\psi}\gamma_{\mu} - \frac{2m_{B}}{r^{2}}\left(G_{M}^{\psi} - G_{E}^{\psi}\right)r_{\mu}\right)v_{\bar{B}}\epsilon^{\mu}$ G. Fäldt, EPJA 52 141(2016) G. Fäldt and A. Kupsc, PLB 772 16(2017) $r^{2} = q^{2} = \frac{s}{4} - m_{B}^{2}$

 $\psi(1^-)\to \bar{B}(1/2^-)B(1/2^+)$

Method 2, using L-S scheme, the amplitude,

$$M = \psi_{\mu}^{(1)} \left(g_S g^{\mu\nu} + g_D e^{i\delta} \tilde{t}^{(2)\mu\nu} \right) \epsilon_{\nu} = \bar{u}_B \left(\gamma_{\mu} - \frac{(p_B - p_{\bar{B}})}{m_{\psi} + 2m_B} \right) v_{\bar{B}} \left(g_S g^{\mu\nu} + g_D e^{i\delta} \tilde{t}^{(2)\mu\nu} \right) \epsilon_{\nu} \qquad \begin{array}{l} S_{\psi} = S_{\bar{N}N^*} + L_{\bar{N}N^*} \\ 1 = 1 + (0,2) \\ \text{Including S- and D-wave} \end{array}$$

Relationship, there are three free parameters in both cases, we can define them as: an overall coupling constant, $\left|\frac{g_D}{g_S}\right| \left(\left|\frac{G_E^{\psi}}{G_M^{\psi}}\right|\right)$, and $\delta \left(\Delta \Phi \equiv Arg\left(\frac{G_E^{\psi}}{G_M^{\psi}}\right)\right)$, typically, $e^{i\delta}\frac{g_D}{g_S} = -\frac{3}{2r^2}\frac{2m_B - r^2/(m_\psi + 2m_B) - 2m_B\left(G_E^{\psi}/G_M^{\psi}\right)}{2m_B - r^2/(m_\psi + 2m_B) + 2m_B\left(G_E^{\psi}/G_M^{\psi}\right)}$

会 中国神宫院大学

Two ways for the amplitude of $\psi \to \overline{B}B$ Method 1, using G_E^{ψ} and G_M^{ψ} , the amplitude, $M = -ie_g \overline{u}_B \left(G_E^{\psi} \gamma_{\mu} - \frac{2m_B}{r^2} \left(G_M^{\psi} - G_E^{\psi} \right) r_{\mu} \right) v_{\overline{B}} \epsilon^{\mu}$ Method 2, using PAW, the amplitude, $M = \overline{u}_B \left(\gamma_{\mu} - \frac{(p_B - p_{\overline{B}})}{m_{\psi} + 2m_B} \right) v_{\overline{B}} (g_S g^{\mu\nu} + g_D e^{i\delta} \tilde{t}^{(2)\mu\nu}) \epsilon_{\nu}$

Experimently,

(1) an overall coupling constant can be obtained from the partial width Γ . (2) $\Gamma = \begin{bmatrix} \alpha \\ \alpha \end{bmatrix}$ and $\Delta \Phi = Arg \begin{pmatrix} \alpha \\ \alpha \end{bmatrix}$ $= \frac{-3r^{2}r^{2}/8 - 9tr^{2}\cos \theta}{9 + 5t^{2}r^{2}/6 - 3tr^{2}\cos \theta}$

$$e^{i\Delta\Phi} = \sqrt{\frac{1+\alpha}{1-\alpha}} \left(\frac{2m_B}{m_{\psi}} - \frac{r^2}{m_{\psi}(m_{\psi}+2m_B)}\right) \frac{3+2r^2te^{i\delta}}{3-r^2te^{i\delta}}$$

Method 1, using G_E^{ψ} and G_M^{ψ} , the amplitude, $M = -ie_g \bar{u}_B \left(G_E^{\psi} \gamma_{\mu} - \frac{2m_B}{r^2} \left(G_M^{\psi} - G_E^{\psi} \right) r_{\mu} \right) v_{\bar{B}} \epsilon^{\mu}$ Method 2, using PAW, the amplitude, $M = \bar{u}_B \left(\gamma_{\mu} - \frac{(p_B - p_{\bar{B}})}{m_{\psi} + 2m_B} \right) v_{\bar{B}} \left(g_S g^{\mu\nu} + g_D e^{i\delta} \tilde{t}^{(2)\mu\nu} \right) \epsilon_{\nu}$

Experimently,

(1) an overall coupling constant can be obtained from the partial width Γ . (2) $\mathbf{t} = \left| \frac{g_D}{g_S} \right|$ and δ can be determined by angular distribution, $\frac{d\Gamma}{d\cos\theta} \sim (1 + \alpha\cos^2\theta)$, and $\Delta \Phi \equiv Arg\left(\frac{G_E^{\psi}}{G_M^{\psi}}\right)$

$$d^{\mu} = \left\langle \frac{1}{1-\alpha} \left(\frac{b}{m_{\psi}} - \frac{b}{m_{\psi}} (m_{\psi} + 2m_B) \right) \right\rangle \left(\frac{1}{3 - r^2 t e^{i\delta}} \right)$$

Method 1, using G_E^{ψ} and G_M^{ψ} , the amplitude, $M = -ie_g \bar{u}_B \left(G_E^{\psi} \gamma_{\mu} - \frac{2m_B}{r^2} \left(G_M^{\psi} - G_E^{\psi} \right) r_{\mu} \right) v_{\bar{B}} \epsilon^{\mu}$ Method 2, using PAW, the amplitude, $M = \bar{u}_B \left(\gamma_{\mu} - \frac{(p_B - p_{\bar{B}})}{m_{\psi} + 2m_B} \right) v_{\bar{B}} \left(g_S g^{\mu\nu} + g_D e^{i\delta} \tilde{t}^{(2)\mu\nu} \right) \epsilon_{\nu}$

Experimently,

(1) an overall coupling constant can be obtained from the partial width Γ . (2) $\mathbf{t} = \left| \frac{g_D}{g_S} \right|$ and δ can be determined by angular distribution, $\frac{d\Gamma}{d\cos\theta} \sim (1 + \alpha\cos^2\theta)$, and $\Delta \Phi \equiv Arg\left(\frac{G_E^{\psi}}{G_M^{\psi}}\right)$ $\alpha = \frac{-3t^2r^2/8 - 9tr^2\cos\delta}{9 + 5t^2r^2/8 - 3tr^2\cos\delta};$

$$e^{i\Delta\Phi} = \sqrt{\frac{1+\alpha}{1-\alpha} \left(\frac{2m_B}{m_{\psi}} - \frac{r^2}{m_{\psi}(m_{\psi}+2m_B)}\right)} \frac{3+2r^2te^{i\delta}}{3-r^2te^{i\delta}}$$

$$t = \left| \frac{g_D}{g_S} \right| \qquad \alpha = \frac{-3t^2 r^2 / 8 - 9tr^2 \cos \delta}{9 + 5t^2 r^2 / 8 - 3tr^2 \cos \delta};$$

$$e^{i\Delta\Phi} = \sqrt{\frac{1+\alpha}{1-\alpha}} \left(\frac{2m_B}{m_{\psi}} - \frac{r^2}{m_{\psi}(m_{\psi} + 2m_B)} \right) \frac{3 + 2r^2 t e^{i\delta}}{3 - r^2 t e^{i\delta}}$$

$$\frac{\Gamma_{S}}{\Gamma_{total}} = \frac{9}{9 + 2t^{2} \left(m_{\psi}^{2} - 2m_{B}^{2}\right)^{2}}$$
$$\bar{l} = l_{S} \frac{\Gamma_{S}}{\Gamma_{total}} + l_{D} \frac{\Gamma_{D}}{\Gamma_{total}}$$
$$r_{eff} = \frac{\bar{l}}{p}$$

$$t = \left| \frac{g_D}{g_S} \right| \qquad \alpha = \frac{-3t^2 r^2 / 8 - 9tr^2 \cos \delta}{9 + 5t^2 r^2 / 8 - 3tr^2 \cos \delta};$$
$$e^{i\Delta\Phi} = \sqrt{\frac{1+\alpha}{1-\alpha}} \left(\frac{2m_B}{m_{\psi}} - \frac{r^2}{m_{\psi}(m_{\psi} + 2m_B)} \right) \frac{3 + 2r^2 t e^{i\delta}}{3 - r^2 t e^{i\delta}}$$

Mode	α	$\Delta \Phi$	g_D/g_S	δ	$\Gamma_S/\Gamma_{\rm Total}$	$r_{ m eff}$
$J/\psi ightarrow \Lambda ar\Lambda$	$0.461 \pm 0.013 [23]$	$0.74 \pm 0.019 [23]$	0.180 ± 0.005	-0.804 ± 0.024	$85.7\pm0.6\%$	0.0488 ± 0.0021
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	$-0.508 \pm 0.010[24]$	$-0.270\pm0.021[24]$	0.171 ± 0.006	2.67 ± 0.04	$90.9\pm0.6\%$	0.0362 ± 0.0024
$\psi(2S) \to \Sigma^+ \bar{\Sigma}^-$	$0.682 \pm 0.041[24]$	$0.379 \pm 0.084 [24]$	0.097 ± 0.009	-0.33 ± 0.10	$88.3\pm2.0\%$	0.033 ± 0.006

中国神学院大学

$$t = \left| \frac{g_D}{g_S} \right| \qquad \alpha = \frac{-3t^2 r^2 / 8 - 9tr^2 \cos \delta}{9 + 5t^2 r^2 / 8 - 3tr^2 \cos \delta};$$
$$e^{i\Delta\Phi} = \sqrt{\frac{1+\alpha}{1-\alpha}} \left(\frac{2m_B}{m_{\psi}} - \frac{r^2}{m_{\psi}(m_{\psi} + 2m_B)} \right) \frac{3 + 2r^2 t e^{i\delta}}{3 - r^2 t e^{i\delta}}$$

Need further decay, such as $\Lambda \to p \; \pi$

Mode	α	$\Delta \Phi$	g_D/g_S	δ	$\Gamma_S/\Gamma_{\rm Total}$	$r_{ m eff}$
$J/\psi ightarrow \Lambda ar{\Lambda}$	$0.461 \pm 0.013 [23]$	$0.74 \pm 0.019[23]$	0.180 ± 0.005	-0.804 ± 0.024	$85.7\pm0.6\%$	0.0488 ± 0.0021
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	$-0.508 \pm 0.010[24]$	$-0.270 \pm 0.021[24]$	0.171 ± 0.006	2.67 ± 0.04	$90.9\pm0.6\%$	0.0362 ± 0.0024
$\psi(2S) \to \Sigma^+ \bar{\Sigma}^-$	$0.682 \pm 0.041[24]$	$0.379 \pm 0.084[24]$	0.097 ± 0.009	-0.33 ± 0.10	$88.3\pm2.0\%$	0.033 ± 0.006

中国科学院大学

Mode	α	$\Delta \Phi$	g_D/g_S	δ	$\Gamma_S/\Gamma_{\text{Total}}$	$r_{ m eff}$
$J/\psi ightarrow \Lambda \bar{\Lambda}$	$0.461 \pm 0.013 [23]$	$0.74 \pm 0.019[23]$	0.180 ± 0.005	-0.804 ± 0.024	$85.7\pm0.6\%$	0.0488 ± 0.0021
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	$-0.508 \pm 0.010[24]$	$-0.270 \pm 0.021[24]$	0.171 ± 0.006	2.67 ± 0.04	$90.9\pm0.6\%$	0.0362 ± 0.0024
$\psi(2S) \to \Sigma^+ \bar{\Sigma}^-$	$0.682 \pm 0.041 [24]$	$0.379 \pm 0.084[24]$	0.097 ± 0.009	-0.33 ± 0.10	$88.3 \pm 2.0\%$	0.033 ± 0.006

Mode	α	$\Delta \Phi$	g_D/g_S	δ	$\Gamma_S/\Gamma_{\rm Total}$	$r_{ m eff}$
$J/\psi ightarrow \Lambda ar{\Lambda}$	$0.461 \pm 0.013 [23]$	$0.74 \pm 0.019[23]$	0.180 ± 0.005	-0.804 ± 0.024	$85.7\pm0.6\%$	0.0488 ± 0.0021
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	$-0.508 \pm 0.010[24]$	$-0.270 \pm 0.021[24]$	0.171 ± 0.006	2.67 ± 0.04	$90.9\pm0.6\%$	0.0362 ± 0.0024
$\psi(2S) \to \Sigma^+ \bar{\Sigma}^-$	$0.682 \pm 0.041[24]$	$0.379 \pm 0.084[24]$	0.097 ± 0.009	-0.33 ± 0.10	$88.3\pm2.0\%$	0.033 ± 0.006

通过这个计算可以发现 ψ 的有效衰变半径很小。这样就会导致 $\psi \rightarrow \overline{N}N^*$ 的轨道角动量很小,即 $L = r_{eff} \times p$,那么就很难产生高自旋的 N^* .所以在这类过程中, N^* 的分波分析其实只要取到l = 5/2就基本足够分析数据了。

当然我们需要更多的数据来确认。

Motivation

Question: How many partial waves does ψ decay need ?

中国和学校

N(2190) 7/2-	πN and γN
N(2220) 9/2+	πN and γN
N(2250) 9/2-	πN and γN
N(2300) 1/2+	ψ(2S) decay
N(2570) 5/2-	ψ(2S) decay
N(2600) 11/2-	πN
N(2700) 13/2+	πN

 $L = r_{eff} \times p$

$$\pi \text{N and } \gamma \text{N} \qquad \begin{array}{l} E \sim 2 \text{ GeV} \rightarrow \boldsymbol{p} \sim 1 \text{ GeV} \\ r_{eff} \sim r_N \sim 1 \text{ fm} \\ L \sim 1 \text{ fm} \times 1 \text{ GeV} \sim 5 \\ J_{N^*} \sim \left[5 - \frac{3}{2}, 5 + \frac{3}{2}\right] \sim \left[\frac{7}{2}, \frac{13}{2}\right] \end{array}$$

How to estimate the effective radius of the ψ decay ??? $\psi \rightarrow \overline{B}(1/2-)B(1/2+) \longrightarrow r_{eff} \sim \frac{\overline{L}}{n}$

University of Chinese Academy of Sciences

University of Chinese Academy of Sciences

PE # 21

Mode	α	$r_{ m eff}({ m fm})$
$\psi_{2S} \to \Lambda \overline{\Lambda}$	$0.82 \pm 0.10[25]$	[0.040 - 0.148]
$\psi_{2S} \to p\bar{p}$	$1.03 \pm 0.09[27]$???
$\psi_{2S} \to n\bar{n}$	$0.68 \pm 0.23[27]$	[0.024 - 0.156]

Since p(n) can not further decay, thus $\Delta \Phi$ cannot be measured. We need new observable, such as $\Gamma_{//}$ to stand for the decay width of the process where p(n)and $\bar{p}(\bar{n})$ have the same polarization,

$$\Gamma_{//} = \frac{|\vec{p}_B|}{32\pi^2 m_{\psi}^2} \int \frac{1}{2} \sum_{S_{\psi}, S_B = S_{\bar{B}}} |M(S_{\psi}, S_B, S_{\bar{B}})|^2 d\Omega = \Gamma_S + 0.7\Gamma_D$$

Summary

- Introduction of L-S scheme
- Through $\psi \to \overline{B}(1/2-)B(1/2+)$ to estimate the effective radius of ψ decay, around 0.05fm.
- It leads to low spin N^* dominate in the $\psi \to \overline{N}N^*$, thus, highest partial wave analysis require the total J of N^* with l = 5/2.
- It provides a unique window to search low spin baryon resonances with masses above 2 GeV in ψ decay.
- We need more experimental data to confirm it.

Thanks Very Much !

