

质子-质子碰撞中 Lambda超子自旋极化实验进展

Outline

- Lambda "spontaneous" polarization puzzle since 1976
- Beam induced Lambda polarization in pp collisions
- Polarizing Fragmentation Functions in pp/pA collisions

Lambda: final state "polarimetry"

- Self-analyzing weak decay: Lambda polarization can be measured from the angular distribution of its daughter particles: (Br~64%) (Br~36%)
- A polarization plays an important role in spin physics
 - Transverse polarization in unpolarized pp, pA (G.Bunce et al 1976)
 - Study pol. fragmentation function and spin content of hyperon
 - Complementary to Kaon SIDIS, study spin structure of nucleon

Liang and Boros, PRL79, 3608 (1997)

The result in 1976

G. Bunce et al. PRL36, 1113 (1976)

- Scattering angles determined by incoming beam angle
- Recorded Lambda decay after 5.3m collimator inside sweeping magnet M2
- <u>10%</u> level polarization observed; increasing vs. p_T

Follow-up measurements

incomplete list

Heller et al., Phys. Lett. B68 480 (1977) Heller et al., Phys. Rev. Lett. 41, 607 (1978) Erhan et al., Phys. Lett B82, 301 (1979) Lomanno et al., Phys. Rev. Lett. 43, 1905 (1979) Heller et al., Phys. Rev. Lett. 51, 2025 (1983) Abe et al., Phys. Rev. Lett. 50, 1102 (1983) Aleev et al., Z. Phys. C 36, 27 (1987) Lundberg et al., Phys. Rev. D 40, 3557 (1989) Ramberg et al., Phys. Lett. B 338, 403 (1994) Fanti et al., Eur. Phys. J. C 6 265 (1999) Abt et al., Phys. Lett. B 638, 415 (2006) Aad et al., Phys. Rev. D 91, 032004 (2015) Abt et al., JHEP09, 082 (2024)

24 GeV proton + Platinum at CERN 400 GeV proton + Beryllium at Fermilab (different hyperon) \sqrt{s} = 53, 62 GeV proton + proton at CERN (ISR) 28.5 GeV proton + Iridium at BNL (AGS) 400 GeV proton + Beryllium/Copper/Lead at Fermilab 12 GeV proton + Tungsten at KEK ~40 GeV neutron + Carbon/Aluminum/Copper 400 GeV proton + Beryllium at Fermilab (higher pT) 800 GeV proton + Beryllium at Fermilab 450 GeV proton + Beryllium at CERN (SPS-NA48) 920 GeV proton + Carbon/Tungsten at DESY (HERA-B) \sqrt{s} = 7 TeV proton + proton at CERN (ATLAS) 2.5 TeV proton + Neon at CERN (LHCb-SMOG)

For reviews, see prof. Liang's talk.

Dependence on p_T and x_F

Lundberg et al. Phys. Rev. D 40, 3557 (1989)

Abt et al, JHEP09, 082 (2024)

• Increase vs. p_T and saturate at ~1 GeV

Increase vs. x_F

Dependence on energy

• Almost NOT dependent on energy

Dependence on target-mass

Abe et al., Heller et al., Aleev et al., Phys. Rev. Lett. 50, 1102 (1983) Z. Phys. C 36, 27 (1987) Phys. Rev. Lett. 51, 2025 (1983) P_T in GeV/c 0.4 0.8 1.2 (%) 0 △ FNAL (300 GeV) (a) Polarization BNL (28.5 GeV c) (a) 10 1.4 1.4 ₹ ₹ Ŧ This Experiment 1. (12 GeV) 0.8 - 0.1 • Be 0 0.6 0.6 POLARIZATION 0 -10 0 0 0.4 0.4 $\Delta Cu + Pb$ 0.2 0.2 0.8 0.8
 0.8 P_T in GeV/c so) 0.6 0.4 ິບ,0.6 ℃ 0.6 0.8 1.2 0.4 (b) -30 Polarization 1.4 1.2 1.2 0.8 0.8 0.6 0.6 0.4 0.8 1.2 1.6 2.0 Į -0.1 0.4 0.4 0.2 $P_T (GeV/c)$ 0.2 $\Delta Cu + Pb$ cosΘ cosΘ

- Weakly dependent on target-mass
 - --> Nucleon level or even parton level reaction

(d)

(e)

Anti-Lambda polarization ~ 0

A.D. Panagiotou, Int.J.Mod.Phys.A 5, 1197,(1990)

Lambda-bar polarization is consistent with zero up to 1.4 GeV, as expected from the combination of the three sea antiquarks.

Features of lambda spontaneous polarization

- Lambda transverse polarization is significantly.
- Anti-lambda is not polarized.
- Polarization is (almost) independent of beam energy.
- x_f and p_T dependence scales with energy.
- Weak target-mass dependence: $pA \approx pp$, parton level reaction.

Non-perturbative effects at Initial and Final States

Partonic scattering (pQCD) cannot explain the large polarization. Then, must be non-pQCD effects from *initial state and/or final state*.

Can not distinguish in pp; ep and e^+e^- can separate.

- Spin transfer from initial state: parton is polarized in polarized protonHelicity/Transiversityparton is polarized in unpolarized protonBoer-Mulders
- Polarization arising at final state: parton is <u>unpolarized</u> but fragmenting <u>Polarizing FFs</u> into <u>polarized</u> hadron.

Polarized RHIC: a very big deal

- High current polarized proton source (OPPIS)
- Ability to accelerate polarized protons with Siberian Snakes demonstrated, and became a routine, at the highest energy!
- Ability to manipulate spin direction(spin rotator) and monitor that, demonstrated and became a routine.
- 106 ns bunch crossing with pre-determined spin directions a major boon for controlling systematics

Polarized RHIC

Shutting down in 2025, next stage: Electron-ion Collider

RHIC spin data accumulation

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Year	√s (GeV)	L (pb ⁻¹)	<p> (%)</p>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Long	2006	62.4 200	 6.8	48 57
Long201150012482012510825620135102565620152005253200662.40.24820082007.845201150025552012200226020152005253201751035055202250840052202420016455		2009	200 500	25 10	38 55
2012 510 82 56 2013 510 256 56 2015 200 52 53 2006 62.4 0.2 48 2008 200 8.5 57 2011 500 25 55 2012 200 25 55 2015 200 52 53 2011 500 25 55 2012 200 22 60 2015 200 52 53 2017 510 350 55 2022 508 400 52 2024 200 164 55		2011	500	12	48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2012	510	82	56
20152005253200662.40.24820082008.55720082007.845201150025552012200226020152005253201751035055202250840052202420016455		2013	510	256	56
2006		2015	200	52	53
20082007.84520115002555Trans2012200226020152005253201751035055202250840052202420016455	Trans	2006	62.4 200	0.2 8.5	48 57
2011 500 25 55 Trans 2012 200 22 60 2015 200 52 53 2017 510 350 55 2022 508 400 52 2024 200 164 55		2008	200	7.8	45
Trans 2012 200 22 60 2015 200 52 53 2017 510 350 55 2022 508 400 52 2024 200 164 55		2011	500	2 5	55
2015 200 52 53 2017 510 350 55 2022 508 400 52 2024 200 164 55		2012	200	22	60
201751035055202250840052202420016455		2015	200	52	53
202250840052202420016455		2017	510	350	55
2024 200 164 55		2022	508	400	52
		2024	200	164	55

by STAR

STAR detector overview

Time Projection Chamber

- charged track momentum msmt
- particle identification dE/dx,
- vertex reconstruction
- coverage $|\eta| < 1$

Time of Flight detector

- particle identification
- coverage $|\eta| < 1$

Barrel and Endcap E.M. Cal.

- towers and Shower Maximum Det.
- neutral EM energy measurement,
- trigger (towers, patches of towers)
- coverage $|\eta| < 1$ and $1 < \eta < 2$

Only running detector at RHIC in 2017-2022

Longitudinal spin transfer in polarized pp collision

The factorized framework enables perturbative description

JAM, Phys. Rev. Lett. 119, 132001 (2017).

 D_{LL} can provide constraints on both polarized FFs and polarized PDFs of s and s-bar D_{LL} vs *z* can provide direct probe to the polarized FFs

D_{LL} predictions for pp at RHIC

scenario 1: <u>only s quark can contribute</u>
to polarization.
scenario 2: u and d quarks have the
same contribution to polarized but u and
d have an <u>opposite sign</u> from s quark.
scenario 3: u, d and s quarks have the

same contribution to the polarized

Dramatic different predictions between different extreme scenarios

D. de Florian, M. Stratmann, and W. Z.-B. Kang, K. Lee, and F. Zhao, Vogelsang, Phys. Rev. Lett. 81, 4 (1998). Physics Letters B 809, 135756 (2020).

D_{LL} measurements at STAR

- Select hard scattering events using a jet trigger based on the energy deposits in the EMC
- 2. Topological cuts to reduce background
- 3. Side-band method to estimate residual background
- 4. Require hyperons to be part of a jet

 D_{LL} has been extracted from Lambda counts with opposite beam polarization within a small interval of $\cos\theta^*$. STAR, PRD80, 111102 (2009)

$$D_{LL} = \frac{1}{\alpha \cdot P_{heam} < \cos\theta^* >} \cdot \frac{N^+ - N^-}{N^+ + N^-}$$

$$N^{+} = N^{++} \frac{L_{--}}{L_{++}} + N^{+-} \frac{L_{--}}{L_{+-}}$$
$$N^{-} = N^{-+} \frac{L_{--}}{L_{-+}} + N^{--}$$

where the acceptance canceled out.

Relative luminosity ratio measured with VPD, ZDC

D_{LL} results in pp 200 GeV

X.N. Liu, B.Q. Ma. Eur. Phys. J. C 10 (2019).

See prof. Ma's talk

- Second D_{LL} measurement from STAR, improved but still tatistically limited.
- Theoretical: when fit to data, provide constraints to (anti)strange quark polarization

Latest D_{LL} results in pp

STAR, Phys. Rev. D 109, 012004 (2024)

- Twice statistics larger as STAR 2009 data
- Most precise measurements up to date.
- Consistent results between and
- Two year's results are consistent
- Results are consistent with LM calculation
- Strong disfavor of the scenario 3 for the polarized FFs

Model predictions:

- X.N. Liu, B.Q. Ma. Eur. Phys. J. C 10 (2019).
- D. de Florian, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 81, 530 (1998).

D_{LL} vs z

STAR, Phys. Rev. D 109, 012004 (2024)

- The results directly probe the polarized fragmentation functions
- Results are comparable to model predictions within uncertainties
- Indication of small helicity distributions of (anti-) strange quark and/or small polarized fragmentation functions

Model predictions:

Z.-B. Kang, K. Lee, and F. Zhao,
 Physics Letters B 809, 135756 (2020).

Transverse spin transfer in polarized pp collision

Transverse spin transfer of hyperons provide access to transversity and transversely pol. frag. function:

$$D_{TT} \circ \frac{dS^{(p^-p^{\textcircled{transmitters}}H^-X)} - dS^{(p^-p^{\textcircled{transmitters}}H^-X)}}{dS^{(p^-p^{\textcircled{transmitters}}H^-X)} + dS^{(p^-p^{\textcircled{transmitters}}H^-X)}} = \frac{dD_TS}{dS}$$

$$dD_T S^{(pp \to HX)} \propto \sum_{abcd} \int dx_a \, dx_b \, dz \, df_a(x_a) f_b(x_b) D_T D_c^H(z) \, dD_T S^{(ab \to cd)}$$

$$transversity \, distribution$$

$$Transversely \, polarized fragmentation function$$

$$pQCD$$

- D. de Florian, J. Soffer, M. Stratmann, W. Vogelsang, PLB439, 176 (1998).
- Q. Xu, Z. T. Liang, PRD70, 034015 (2004).
- Q. Xu, Z. T. Liang, E. Sichtermann, PRD73, 077503 (2006).

partonic scattering plane

 $\sqrt{s}=500 \text{ GeV}$ $p_T > 13 \text{ GeV}$

 D_{NN}^{Λ}

Earlier transverse spin transfer measurements in pp

Bonner et al, Phys. Rev. Lett. 58, 447 (1987) E704, Phys. Rev. Lett. 78, 4003 (1997) DISTO, Phys. Rev. Lett. 83, 1534 (1999) Transversely polarized proton 13.3/18.5 GeV Transversely polarized proton 200 GeV

Transversely polarized proton 3.67 GeV Exclusive/Simi-inclusive

$$D_{NN} = \frac{E \frac{d^3 \sigma}{dp^3}^{\uparrow\uparrow} - E \frac{d^3 \sigma}{dp^3}^{\uparrow\downarrow}}{E \frac{d^3 \sigma}{dp^3}^{\uparrow\uparrow} + E \frac{d^3 \sigma}{dp^3}^{\uparrow\downarrow}}$$

Both polarization transverse to production plane

Latest D_{TT} measurements at RHIC

- The D_{TT} results are consistent with model calculations within uncertainties, also consistent with 0.
- First measurement of D_{TT} vs. z in p+p collisions, providing constraints on transversely polarized fragmentation functions.

Polarizing Fragmentation Function

Unpolarized quark fragmenting into transversely polarized hadron

Measurements in e⁺e⁻ annihilation

- LEP ($\sqrt{s} = 90$ GeV): no significant polarization
 - ALEPH $P_T^{\Lambda, \overline{\Lambda}} = 0.016 \pm 0.007$

ALEPH, PLB 374, 319 (1996)

- OPAL $P_T^{\Lambda} = 0.019 \pm 0.014 \ (p_T > 0.3 \text{ GeV/c})$ OPAL, EPJC 2, 49 (1998)
- At Belle ($\sqrt{s} = 10.6 \text{ GeV}$) Belle, PRL 122, 042001 (2019)
 - Significant polarization with fractional energy z dependence
- Extraction of polarizing Fragmentation Function(pFFs)

Callos, Kang, Terry, PRD 102, 096007 (2020)

D'Alesio, Murgia, Zaccheddu, PRD 102, 054001 (2020)

Chen, Liang, Pan, Song, Wei, PLB 816, 136217 (2021)

The difference between LEP and Belle is energy scale dependence?

Global analyses of Belle results

Callos, Kang, Terry,

PRD 102, 096007 (2020)

D'Alesio, Murgia, Zaccheddu,

PRD 102, 054001 (2020)

Chen, Liang, Pan, Song, Wei,

PLB 816, 136217 (2021)

Isospin symmetry constrained

What can we do in pp/pA collision at RHIC and LHC?

- Polarizing Fragmentation Functions(pFFs) can be accessed by transverse polarization of Λ-in-jet in pp collision
 Boer et al, PLB 671, 91-98 (2008)
 Kang, Lee, Zhao, PLB 809, 135756 (2020)
- Polarization direction normal to the production plane constructed by jet and Λ momentum
- Complement to e^-e^+ :
 - Cover a wide range of jet p_T : 5~50 GeV at RHIC and higher at LHC
 - Test universality of pFFs

Boer et al, Phys.Rev. Lett. 105.202001 (2010)

V0-jet reconstruction

- Jet reconstruction
 - Anti- k_T with R = 0.6
 - Particle list: TPC tracks and EMC energy deposit
 - $\Lambda, \overline{\Lambda}$ as input particles
 - Removing daughter particles to avoid double counting
- Underlying event correction by off-axis method

MC simulation

- Generator: PYTHIA 6.4.28
- Full GEANT3 simulation of detector response
- Λ filter and trigger filter
- Same analysis algorithm applied for MC sample as for data

Acceptance correction and polarization extraction

by detector acceptance

from MC simulation

31

Preliminary results from 200 GeV pp collision

Polarization as a function of jet p_T

 $\widehat{\boldsymbol{S}} = \widehat{\boldsymbol{p}}_{jet} \times \widehat{\boldsymbol{p}}_{\Lambda}$

- Cover jet p_T range: 8~25 GeV/c
- No significant jet p_T dependence
- Indication of non-zero $\overline{\Lambda}$ polarization (~2 σ) from average value

Note: $\Lambda(\overline{\Lambda})$ jet p_T corrected to particle level

Preliminary results from 200 GeV pp collision

- Weak z dependence of polarization; no significant j_T dependence
- Providing new data for pFFs, with significant gluon contribution.
- First universality test vs e+e- results

Comparison with e⁺e⁻ results

- STAR energy scale: jet $\langle p_T \rangle \sim 11$ GeV/c
- Λ production at pp is different from Belle
- Similar polarization trend as Belle

Possible connection to other observables?

To production plane polarization

To local polarization with low multiplicity

See Zhenyu's talk

When Lambda-in-Jet is selected with bias, production planes spanned by beam and lambda consistent with by jet axis and lambda When (leading) di-jet or mutli-jet impact event plan reconstruction, polarization surrounding jet axis can be observed as "local polarization"

Summary for lambda in pp (or effective pp)

- Lambda "spontaneous" polarization: longstanding puzzle is still standing after ~50 years
- Lambda spin transfer results could constrain pPDFs and pFFs, in global analysis.
 - 200 GeV data analyzed;
 - 500 GeV on disk to be analyzed.
- Polarization of Lambda in jet could access polarizing FFs and hopefully answer some puzzling questions.
 - Completing analysis of pp 200 GeV;
 - Ongoing analysis for pp500 GeV, pAu 200 GeV and pPb 8.26 TeV

Thanks for your attention!