

Researches on the Response to High-Energy Electrons of the VLAST High-Granularity Electromagnetic Calorimeter Prototype

Author: Hao-Min Hu (胡昊旻) Student id: PB21020507 Supervisor: Associate Prof. Yifeng Wei (魏逸丰副教授) 2025/3/31

Contents

- Gammy-ray Astronomy
- Design of VLAST HEIC Detectors
- Beam Test in CERN
- Monto Carlo Simulation and Parameter Digitization
- Summary and Outlook

Gammy-ray Astronomy

Gammy-Ray Astronomy

- **High energy gamma-rays** could be produced in the interaction about high energy particles accelerated by **extreme astronomical objects**.
- Precise measurements of spectra of high energy gamma-rays are crucial to understand **the astronomical radiation process**

Dark Matter Indirect Detection

Gamma-Ray Burst

- Gamma-ray bursts (GRBs) have strong connections with **supernovae explosions** and possibly **black-holes formation**.
- It is believed that the **physical processes** in the GRBs include synchrotron, inverse-Compton and photo-pion processes.

Design of VLAST HEIC Detectors

DAMPE: Detector system

Parameter	Value
Energy range (e/γ)	5 GeV to 10 TeV
Energy resolution (e/γ)	1.5% at 100 GeV
Energy range (p/ion)	50 GeV to 500 TeV
Energy resolution (p)	40% at 800 GeV
Geometric factor (e)	0.3 m ² sr above 30GeV
Angular resolution (γ)	0.1 degree at 100 GeV
Field of view	1.0 sr

PSD: Anti-coincidence detector for gammas and charges measurement
STK: Particle tracker, photon converter & additional charge measurement
BGO: Energy measurement & particle identification via shower topology
NUD: Further particle ID from electromagnetic & hadronic showers

Astropart.Phys 95 (2017) 6–24

VLAST: Detector system

Parameter	Value
Energy range (e/γ)	1 MeV to 20 TeV
Energy resolution (e/γ)	2% at 100 GeV
Geometric factor (e)	10 m ² sr above 30GeV
Angular resolution (γ)	0.03 degree at 100 GeV

Based on the success of DAMPE, the Purple Mountain Observatory proposes the project of Very Large Area gamma-ray Space Telescope (VLAST).

ACD: Anti-coincidence detector for gammas and charges measurement
 STED: Particle tracker, photon converter & additional energy
 measurement for lower energy gammy-ray photons
 HEIC: Energy measurement & particle identification via shower topology

Astropart.Phys 63 (2022) 27

VLAST: HEIC Prototype

2025/3/31

Beam Test in CERN

VLAST Prototype

- Beam test is carried out to do some researches on the performance of the detector.
- The size of the 10-layer prototype in beam test is 192mm×192mm×417mm, about 3.3 Moliere radius horizontally and 26.8 radiation length vertically.
- My main work is to analyze the energy deposition of **5GeV electron** in **HEIC-Cube**.

Tracking Information from STED

- The figures show the tracking reconstruction results from STED.
- The distribution is similar to 2-dimensional gauss distribution.

Selection Condition

- Selection condition of track:
 - Particles enter the calorimeter from the center of upper surface, and penetrate out from the center of lower surface:
 - $-10mm \le x_1 \le 10mm;$
 - $-10mm \le y_1 \le 10mm;$
 - $-10mm \le x_2 \le 10mm;$
 - $-10mm \le y_2 \le 10mm;$
- Selection condition in HEIC:
 - Energy deposition > 5MeV in per unit;
 - Hit Number > 30
 - PID condition:
 - $Edep_2 + Edep_3 > 0.45 Edep_{tot}$
 - $Edep_9 + Edep_{10} < 0.01 Edep_{tot}$

Monto Carlo Simulation and Parameter Digitization

VLAST Offline

- The offline software system is developed for the offline data processing, including **Monte Carlo** (MC) data production (based on Geant4) as well as experimental data processing and physics analysis.
- The pros and cons of the simulation part of vlast offline:
 - The detectors are almost the same with the real situation
 - No information about the energy deposition of the APD, hard to be digitized

Digitization

- parameter=mip_mpv/20.576*10000/1.6/50/27.4;
- crystal_p.e.=crystal_energy(MeV)*parameter;
- crystal_p.e.=Gaus(crystal_p.e., sqrt(crystal_p.e.));
- noise_p.e.=Gaus(0, (pedestal_sigma/20.576*10000/1.6/50));
- apd_p.e.=apd_energy(eV)/3.6;
- apd_p.e.=Gaus(apd_p.e., sqrt(apd_p.e.));
- crystal_energy=(crystal_p.e.+noise_p.e.+apd_p.e.)/parameter;

Energy Resolution Comparison

Layer Energy Comparison

Summary and Outlook

Summary and Outlook

Summary:

Set selection condition to get close to the real response to the 5 GeV electrons;

Analyzed and compared the results of data from beam test and Monto Carlo simulation;

Made a simple evaluation of the energy resolution of HEIC;

Outlook:

Check the accuracy of the track information from STED;

Alter the source of simulation to the same with beam test;

Improve the process of digitization;

Try to enhance the energy resolution.

Backup

HEIC Cubic Blocks Scheme vs. Long Bar Scheme

- 1. Effective detection area of every layer: \geq 2.4 m × 2.4 m
- 2. Energy resolution: better than 2% (@50 GeV)
- Long bars scheme:
 - Less dead area among crystals, better energy resolution;
 - The growth process of long crystals is relatively complicated;
 - High manufacturing cost of a single crystal.
- Cubic blocks scheme:
 - The process is mature and easy to produce and process;
 - Simpler and clearer clustered contours ;
 - No gaps between modules, convenient for larger-scale expansion.

How to Reach Large Dynamic Range

