

Study of Pion Tracking Efficiency via $e^+e^- \rightarrow \gamma^{ISR}\pi^+\pi^-\pi^+\pi^-$ process

Hua Shi¹ ¹University of Science and Technology of China Oct. 9th, 2024

- BOSS Version & Data Sets
- Event Selection
- Background Study
- ➢ Summary

BOSS Version & Data Sets

- > Physical Process: $e^+e^- \rightarrow \gamma^{\text{ISR}}\pi^+\pi^-\pi^+\pi^-$
- BOSS Version: 7.0.3
- Data: 4180 dataset is used now

$\sqrt{s}(\text{GeV})$	$\mathcal{L}(\mathrm{pb}^{-1})$	RunNo
4.1780	3194.5	$43716 \sim 47066$

- Final: both old 3770 (2.9 fb^{-1}) and 4180 data sets
- ➤ MC samples:

Process	Generator	Samples
$e^+e^- \rightarrow \gamma^{\rm ISR}\pi^+\pi^-\pi^+\pi^-$	PHOKHARA	10M~15.8 ×
$e^+e^- \rightarrow \text{hadrons}$	HYBRID	80M~1×
$e^+e^- \rightarrow (\gamma^{\rm ISR})e^+e^-$	BABAYAGANLO	542M~0.4×
$e^+e^- ightarrow (\gamma^{\rm ISR}) \mu^+\mu^-$	BABAYAGA v3.5	17M~1×
$e^+e^- ightarrow (\gamma^{\rm ISR}) \tau^+ \tau^-$	ККМС	11M~1×
$e^+e^- \rightarrow e^+e^-X$	BESTWOGAM	5M~1×

Signal MC

- → The signal MC of $e^+e^- \rightarrow \gamma^{\text{ISR}}\pi^+\pi^-\pi^+\pi^-$ generated by PHOKHARA
 - ScanMode: ISR
 - NLO: Yes
 - FSR: ISR only

MC truth distributions (higher)

MC Truth

Hua Shi

Pion Tracking Efficiency

3

Event Selection

Missing π^+

- Good neutral tracks:
 - Barrel: $E_{\gamma} \ge 0.025 \text{GeV}$, $|\cos\theta| < 0.8$
 - Endcaps: $E_{\gamma} \ge 0.05 \text{GeV}, 0.86 < |\cos \theta| < 0.92$
 - $0 \le TDC \le 700$ ns
 - The most energetic photon is regarded as the ISR photon and required $E_{\gamma} \ge 0.4$ GeV
- Good charged tracks:
 - $V_r < 1 \text{ cm}, |V_z| < 10 \text{ cm}, |\cos\theta| < 0.93$
 - $N_{\text{Good}} = 3 \text{ or } 4$
 - PID (dE/dx + TOF): prob $(\pi) > prob(K) \& prob(\pi) > prob(p)$

如何判断miss的径迹 不会重复被计算

- Missing a charged track:
 - Successful 1C kinematic fit required $m_{\rm missingtrack} = m_{\pi}$

Further Selection

🕂 Data

 $q\overline{q}$

γπ+π π+π

Further requirments

 $E_{\gamma^{\rm ISR}} > 1.2$

•

- π^0 veto: $M_{\pi^0} \le 0.115 \mid \mid M_{\pi^0} \ge 0.145$
- K_S veto: $M_{K_S} \le 0.487 \mid \mid M_{K_S} \ge 0.507$
- Bhabha veto: $E/p \le 0.8$
 - 对动量范围的影响,主要为了排除本底
- Neutron veto: the second moment of neutral cluster smaller than 22 cm²

Hua Shi

Further Selection

Hua Shi

Pion Tracking Efficiency

Background Analysis

- Hadronic topology analysis
 - Main hadronic channels \rightarrow with π^0

$$e^{+}e^{-} \rightarrow (\gamma^{\text{ISR}})\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$$

$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}\eta$$

$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\omega, \omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

$$e^{+}e^{-} \rightarrow (\gamma^{\text{ISR}})\pi^{+}\pi^{-}\pi^{0}\pi^{0}$$
....

Cutflow检查原因

Why so different? More check

• Signal purity

π^{\pm}	Situation	Background ratio
π^+	$N_{\rm Good} = 3$	23.7%
	$N_{\rm Good} = 4$	55.8%
	$N_{\rm Good} = 3$	22.9%
π	$N_{\rm Good} = 4$	19.0%

Hua Shi

Hua Shi

Pion Tracking Efficiency

🕂 Data

 $q\overline{q}$

0.5

γπ⁺π⁻π⁺π⁻

Comparisons: data and MC () 中国 斜 李 提 # 大 資

• The tagged particles in Missing π^+

Hua Shi

Hua Shi

Pion Tracking Efficiency

9

Comparisons: data and MC () 中國 斜 译 提 # 大 译

University of Science and Technology of China

Comparisons: data and MC () 中国 斜 李 提 # 大 資

• The tagged particles in Missing π^-

Hua Shi

Summary

Summary

- The preliminary event selection has been used
- The main backgrounds are from hadronic channels with π^0
- There is good agreement with data and MC
- The momenta of missing tracking is low
- > Next to do
 - Try to suppress the backgrounds and improve the signal purity
 - Find another control samples to do the pion tracking efficiency
 - The strategy will used in old 3773 dataset

Thank you !

Back up

Further Selection

Hua Shi

Pion Tracking Efficiency

CutFlow Signal MC

	Tagpip			Tagpim		
total number	1000000			1000000		
nGam>=1	5504899	55.0%	55.0%	5504899	55.0%	55.0%
ISR photon	1375268	13.8%	25.0%	1375268	13.8%	25.0%
nGood==3 nGood==4	1261860	12.6%	91.8%	1261860	12.6%	91.8%
npip>=1&&npim>=1	1238241	12.4%	98.1%	1238241	12.4%	98.1%
Mode	257017	2.6%	20.8%	255655	2.6%	20.6%
chi2Tagpip<5	153013	1.5%	59.5%	153390	1.5%	60.0%
isrphoene>1.2	129845	1.3%	84.9%	130227	1.3%	84.9%
M2gg_Noisr	124101	1.2%	95.6%	124582	1.2%	95.7%
M2gg_Isr	123488	1.2%	99.5%	123966	1.2%	99.5%
Mks	112336	1.1%	91.0%	112873	1.1%	91.1%
Isrphosecmom	107755	1.1%	95.9%	108331	1.1%	96.0%
E/p	91667	0.9%	85.1%	89922	0.9%	83.0%

	Tagpip			Tagpim	
total number	80000000				
nGam>=1	75175469				
ISR photon	34898659				
nGood==3 nGood==4	16188142				
npip>=1&&npim>=1	14460273				
Without fourpion	14372029				
Mode	3310425	4.1%	23.0%	3047143	21.2%
chi2Tagpip<5	32466	0.04%	0.98%	19642	0.64%
isrphoene>1.2	18568	0.02%	57.2%	8608	43.8%
M2gg_Noisr	8652	0.01%	46.6%	4531	52.6%
M2gg_Isr	7754	0.01%	89.6%	3986	88.0%
Mks	6715	0.01%	86.6%	3295	82.7%
Isrphosecmom	4047	0.01%	60.3%	 2709	 82.2%
E/p	2807	0.004%	69.4%	1791	66.1%

CutFlow Data

***************************** data **********	****** e *****************************	a *******
***	***	
DTtotal =16497920	9 DTtotal =16497920	
DTmode =3896171	10 DTmode =3681745	
DTchi2 =118801	11 DTchi2 =88653	
DTEisr =40944	12 DTEisr =31097	
DTm2ggNoisr =37343	13 DTm2ggNoisr =28818	
DTm2ggIsr =36841	14 DTm2ggIsr =28366	
DTmks =33724	15 DTmks =25818	
DTisr =30343	10 DTisr =23962	
DTeop =8282	17 DTeop =7873	
************************ qqba **********	****** 18 *****************************	a ************************************
***	***	
QQtotal =14372029	19 QQtotal =14372029	
QQmode =3310425	20 QQmode =3047143	
QQchi2 =32466	21 QQchi2 =19642	
QQEisr =18568	22 QQEisr =8608	
QQm2ggNoisr =8652	<pre>23 QQm2ggNoisr =4531</pre>	
QQm2ggIsr =7754	24 QQm2ggIsr =3986	
QQmks =6715	25 QQmks =3295	
QQisr =4047	26 QQisr =2709	
QQeop =2807	27 <mark>Q</mark> Qeop =1791	
**************************************	****** 28 *****************************	(m ************************************
***	***	
MCtotal =1238241	29 MCtotal =1238241	
MCmode =257017	30 MCmode =255655	
MCchi2 =153013	31 MCchi2 =153390	
MCEisr =129845	32 MCEisr =130227	
MCm2ggNoisr =124101	33 MCm2ggNoisr =124582	
MCm2ggIsr =123488	34 MCm2ggIsr =123966	
MCmks =112336	35 MCmks =112873	
MCisr =107755	36 MCisr =108331	
MCeop =91667	37 MCeop =89922	

Tagpip

Tagpim

Tracking Efficiency

- Tracking efficiency calculated by
 - Calculated by

$$\epsilon_{\pi}^{\text{tracking}} = \frac{N_{\text{nGood}=4}}{N_{\text{nGood}=3} + N_{\text{nGood}=4}}$$

