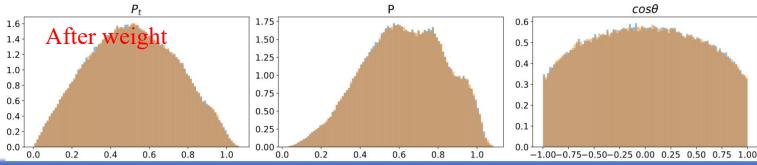


Study of pN Interaction between data and MC

Hailin Song

University of Science and Technology of China

Outline


- **♦** Data sets
- **Event Selection of control sample**
- **◆** Data/MC comparison (inclusive)
- **◆** Data/MC comparison (exclusive)
- **♦** Conclusion
- **♦** Back Up

\overline{p} control sample: $J/\psi \rightarrow p\overline{p}\pi^+\pi^-$

• J/ψ data (BOSS708): $Br(J/\psi \to p\bar{p}\pi^+\pi^-)=(6.0 \pm 0.5) \times 10^{-3}$

Sample type	Ecms (GeV)	Run ID	BOSS Version	Number of event (Int. luminosity)
$J/\psi~(2009)$	3.097	9947-10878	7.0.8	224.0±1.3M, Ref嵒 (79.63±0.07 pb ⁻¹ , Ref嵒)
$J/\psi~(2012)$		27255-28236		1088.5±4.4M, Ref♂ (315.02±0.14 pb ⁻¹ , Ref♂)
$J/\psi~(2017-2019)$		52940-54976 55861-56546 56788-59015		8774.0±39.4M, Ref [©] (2568.07±0.40 pb ⁻¹ , Ref [©])

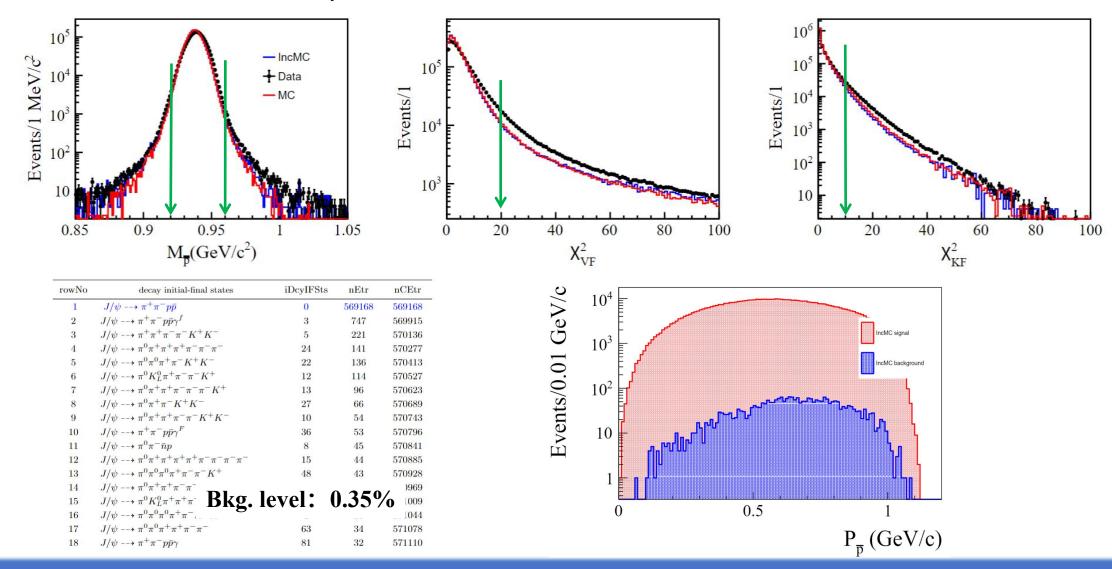
- Signal MC $J/\psi \rightarrow p\bar{p}\pi^+\pi^-$
 - ➤ 4 million with amplitude weighted according to data
 - ➤ BOSS version 711 (to implement the updated GEANT4)

2024/10/16 Song Hailin (USTC)

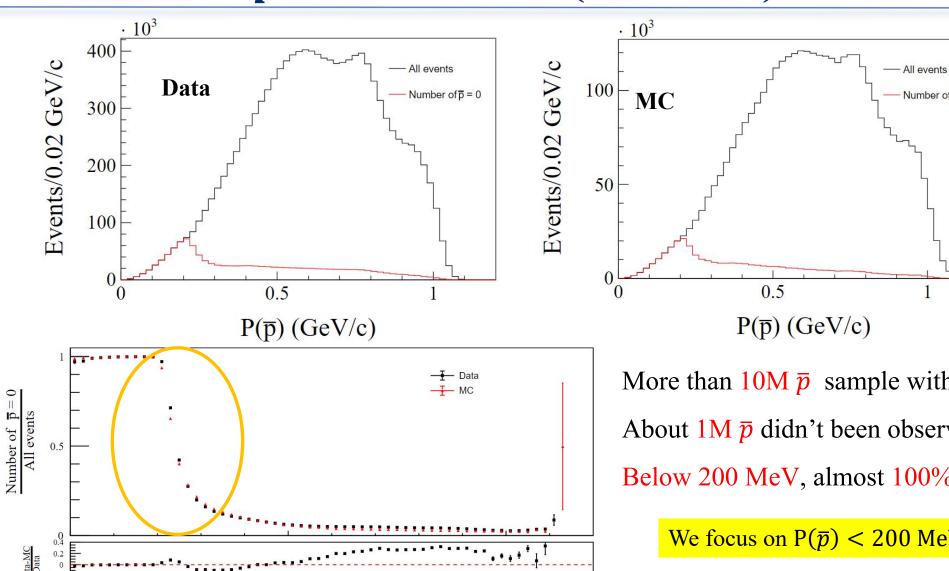
Event Selection

ightharpoonup Good Charged Track: $|\cos \theta|$ ≤ 0.93; $|V_{xy}|$ < 0.5 cm; $|V_z|$ < 5.0 cm; 2 ≤ N_{charged} ≤ 12;

- PID: use dE/dx and TOF information p: prob(p)>prob(π) & prob(p)>prob(K) π : prob(π)>prob(p) & prob(π)>prob(K) K: prob(K)>prob(p) & prob(K)>prob(π) $N_p \ge 1$ and $N_{\pi^+} \ge 1$ and $N_{\pi^-} \ge 1$
- Vertex fit:


 Loop all the $p\pi^+\pi^-$ tracks, and select the combination with minimum χ_{VF}^2

 \triangleright Kinematic fit: Missing 3-momentu of \bar{p} , do 1C kinematic fit, χ^2_{KF}

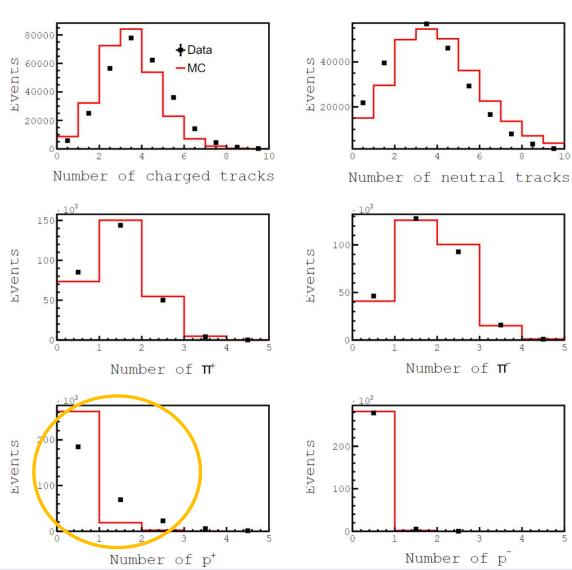

Recoil \overline{p} : $P_{\overline{p}} = P_{cms} - P_p - P_{\pi^+} - P_{\pi^-} \text{ with 4-mom}$ before Kinematic fit

Further selection and Background level

Further Selection: $0.92 < m_{\bar{p}} < 0.96 \text{ GeV/c}^2$, $\chi_{VF}^2 < 20$, $\chi_{KF}^2 < 10$.

Features of $\overline{p}N$ interaction (inclusive)

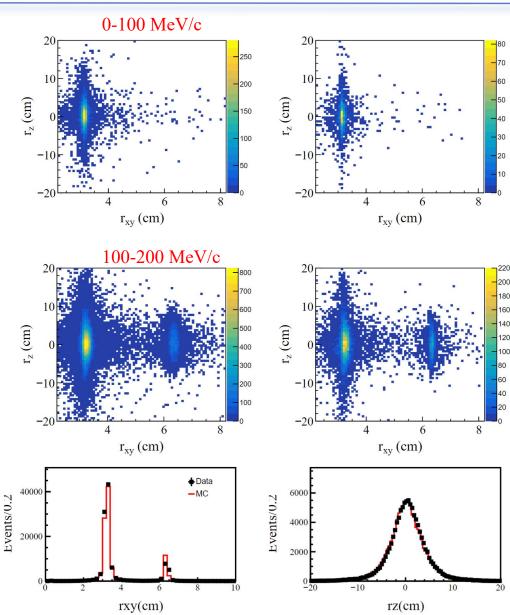
P(p) (GeV/c)


More than $10M \bar{p}$ sample within acceptance About $1M \bar{p}$ didn't been observed \rightarrow interacted Below 200 MeV, almost $100\% \bar{p}$ interacted.

Number of $\overline{p} = 0$

We focus on $P(\bar{p}) < 200$ MeV following

Data/MC comparison ($\overline{p}N \rightarrow anything$)


Focus on: 0-200 MeV/c

Multiplicity of the charged tracks, neutral tracks, pions are **consistent** between data and MC.

Multiplicity of **proton** show **large difference** between data and MC → pop out of proton from nucleon?

Data/MC comparison ($\overline{p}N \rightarrow anything$)

- ightharpoonup Good consistent of the interaction vertex with respect of R_{xy} and R_z
- ➤ Below 100 MeV/c, all are interacted at the beam-pipe
- ➤ Above 100 MeV/c, some are interacted at inner MDC

Event Selection (exclusive process)

➤ Good Charged Track:

$$|\cos\theta| \le 0.93; \quad 2 \le N_{\text{charged}} \le 9;$$

➤ Good Photon:

$$E_{\text{barrel}} \ge 25 \text{ MeV for } |\cos\theta| < 0.80;$$

 $E_{\text{endcap}} \ge 50 \text{ MeV for } 0.86 < |\cos\theta| < 0.92;$
 $0 \le TDC \le 700 \text{ ns};$

➤ Only use dE/dx

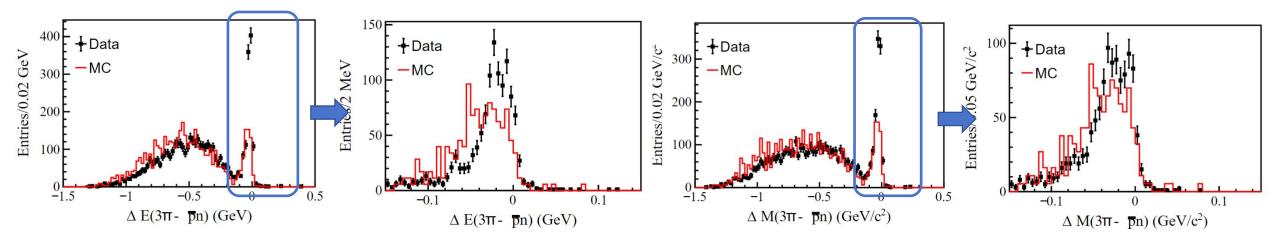
$$p: \operatorname{prob}(p) > 0.001$$
 and $\operatorname{prob}(p) > \operatorname{prob}(\pi, K, e)$ $K: \operatorname{prob}(K) > 0.001$ and $\operatorname{prob}(K) > \operatorname{prob}(p, \pi, e)$

 π : prob (π) >0.001 and prob (π) >prob(p, K, e)

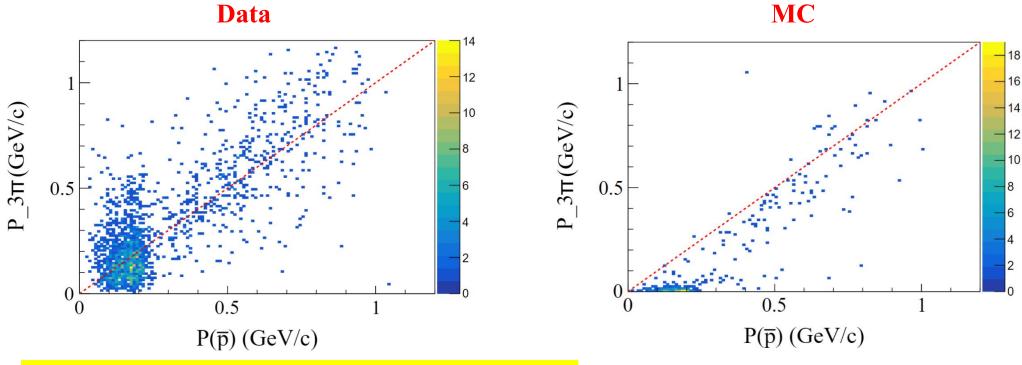
e: prob(e)>0.001 and $prob(e)>prob(p, K, \pi)$

> Further Selection:

$$2.2 < R_{\rm xy} < 8.2 \ {\rm cm}$$
, $|R_{\rm z}| < 10 \ {\rm cm}$ $0.10 < M_{\gamma\gamma} < 0.16 \ {\rm GeV/c^2}$ for one π^0 ; $M_{\gamma\gamma} < 0.05 \ {\rm GeV/c^2}$ for no π^0 .

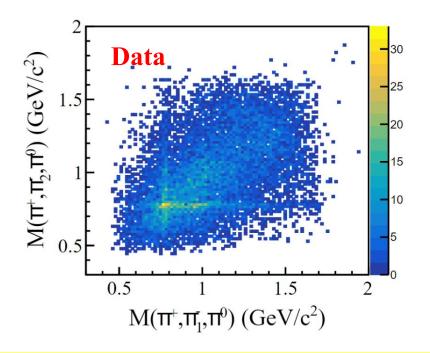

Decay Chain:

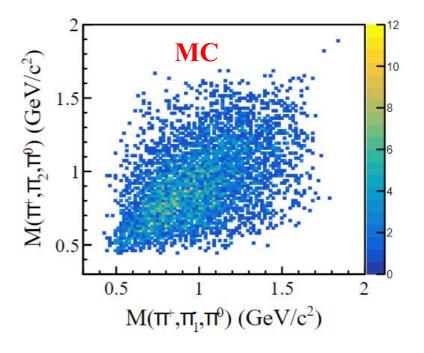
$$\overline{p}p \to \pi^+\pi^+\pi^-\pi^-\pi^0$$
 or $\pi^+\pi^+\pi^-\pi^-$, $\pi^+\pi^-$
 $\overline{p}n \to \pi^+\pi^-\pi^-\pi^0$ or $\pi^+\pi^-\pi^-$


- \succ π^0 Reconstruction: Slect the photon pair with invariant mass closest to π^0
- Vertex fit:

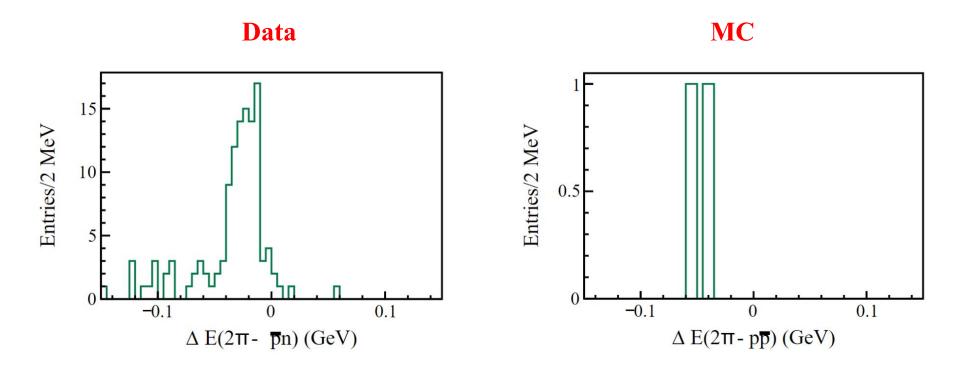
 A vertex fit is performed and $\chi^2 < 200$

$\overline{p}n o \pi^+\pi^-\pi^-$




- \triangleright No Fermi energy or \overline{p} momentum considered for $\overline{p}n$ system now
- Clear peaks observed at $E(\pi^+\pi^-\pi^-)=1.877$ GeV and $M(\pi^+\pi^-\pi^-)=1.877$ GeV, which come from $\bar{p}n \to \pi^+\pi^-\pi^-$, with worse resolution for MC than data
- Besides, both data and MC are not peaked at $E(\pi^+\pi^-\pi^- \bar{p}n)=0$, but shifted to the left, with slightly difference

Inconsistence in the momentum of $P(\pi^+\pi^-\pi^-)$


- ► In MC, indeed, no Fermi energy or \bar{p} momentum are considered in $\bar{p}n$ interaction, $P(\pi^+\pi^-\pi^-)\sim 0$
- \triangleright However, in data, both Fermi energy and \bar{p} momentum will contribute a non-zero momentum to $\bar{p}n$ interaction

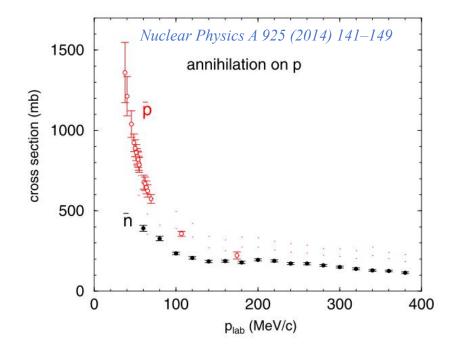
Inconsistence in the amplitude in 3pi mass spectrum

 \triangleright Clear ω signal observed in data while no such structure considered in MC

Inconsistence in the production rate between data and MC

ightharpoonup Clear $\bar{p}p \to \pi^+\pi^-$ signal but not significantly in MC

Reconstructed events (preliminary)


Production rates of different channels.

Differences between data and MC

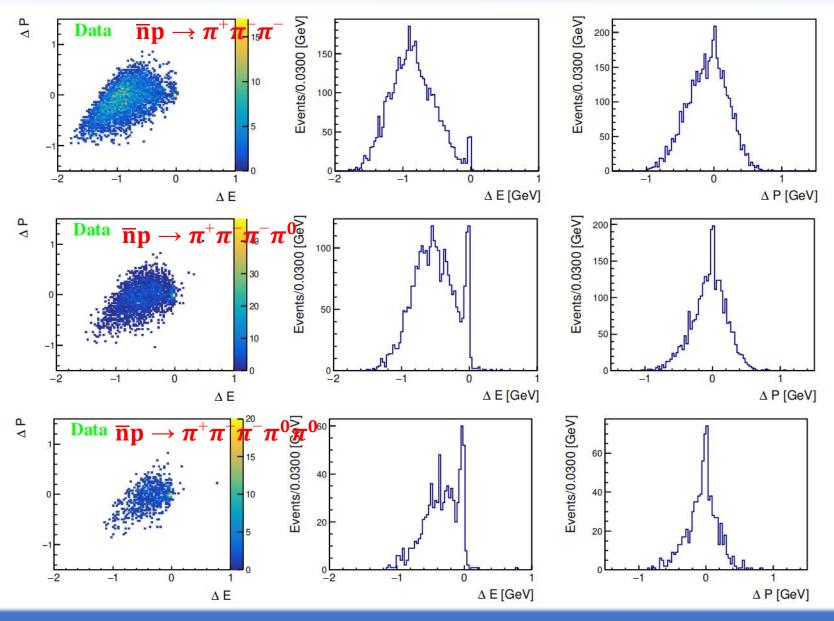
Process	0 <p<0.2 c<="" gev="" th=""><th colspan="2">P>0.2 GeV/c</th></p<0.2>		P>0.2 GeV/c	
1100088	Data	MC	Data	MC
$\overline{p}n o\pi^+\pi^-\pi^-$	774 (10.1%)	209 (9.2%)	751 (11.2%)	134 (7.2%)
$\overline{p}n o\pi^+\pi^-\pi^-\pi^0$	3361 (43.7%)	825 (36.2%)	2049 (30.5%)	796 (42.6%)
$\overline{p}p o\pi^+\pi^-$	78 (1.0%)	4 (0.2%)	146 (2.2%)	15 (0.8%)
$\overline{p}p o\pi^+\pi^-\pi^0$	1529 (19.9%)	270 (11.9%)	1299(19.3%)	264 (14.1%)
$\overline{p}p o\pi^+\pi^+\pi^-\pi^-$	833 (10.8%)	409 (18.0%)	1035 (15.4%)	246 (13.2%)
$\overline{p}p o\pi^+\pi^+\pi^-\pi^-\pi^0$	1117 (14.5%)	561 (24.6%)	1447 (21.5%)	415 (22.2%)

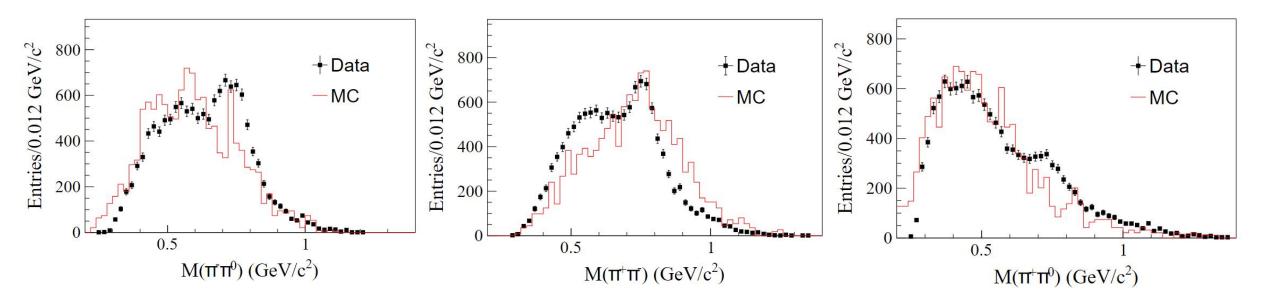
Conclusion

- Overall, the simulation of antiproton interactions is considered to be good. By analyzing the inclusive and exclusive distributions, some differences have been found:
 - Multiplicity of **proton** show **large difference** between data and MC.
 - Inconsistence in the **momentum of final states** between data and MC.
 - Inconsistence in the amplitude in **3pi mass spectrum**.
 - Inconsistence in the production rate between data and MC.

Back Up:

• $\overline{p}p \rightarrow Anything$

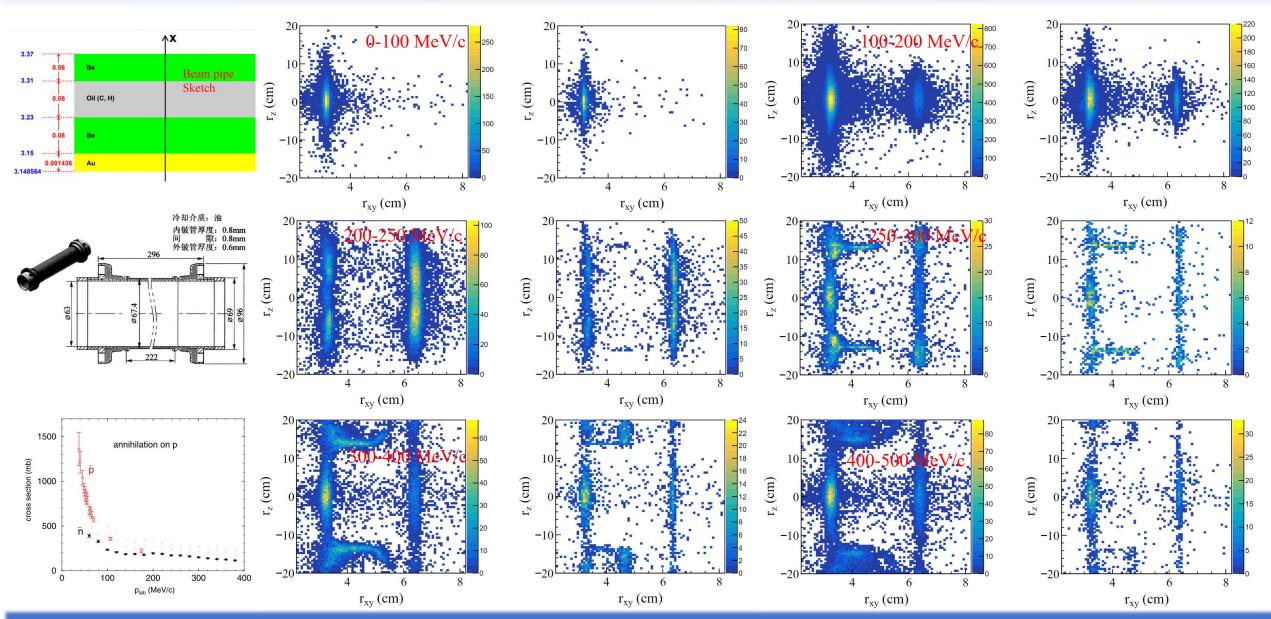

Annihilation frequencies of $\bar{p}p$ annihilation at rest in liquid H₂ into pionic final states (in units of 10^{-3}), from [2,48,216]


Final state	BNL	CERN	Crystal Barrel
All neutral	32 ± 5	41^{+2}_{-6}	35 ± 3
$2\pi^0$		-0	0.65 ± 0.03
$3\pi^0$			7.0 ± 0.4
$4\pi^0$			3.1 ± 0.2
$5\pi^0$			9.2 ± 0.4
$6\pi^0$ (1)			0.12 ± 0.01
$7\pi^{0}$ (1)			1.3 ± 0.1
$8\pi^0$ (2)			0.012 ± 0.001
$9\pi^0$ (2)			0.025 ± 0.003
Non-multipion			15 ± 5
$\pi^+\pi^-$	3.2 ± 0.3	3.33 ± 0.17	3.14 ± 0.12
$\pi^{+}\pi^{-}\pi^{0}$	78 ± 9	69.0 ± 3.5	67 ± 10
$\pi^{+}\pi^{-}2\pi^{0}$			122 ± 18
$\pi^{+}\pi^{-}3\pi^{0}$			133 ± 20
$\pi^{+}\pi^{-}4\pi^{0}$			36 ± 5
$\pi^{+}\pi^{-}5\pi^{0}$ (1)			13 ± 2
$\pi^+\pi^-$ MM	345 ± 12	358 ± 8	$65 \pm 20^*$
$2\pi^{+}2\pi^{-}$	58 ± 3	69 ± 6	56 ± 9
$2\pi^{+}2\pi^{-}\pi^{0}$	187 ± 7	196 ± 6	210 ± 32
$2\pi^{+}2\pi^{-}2\pi^{0}$			177 ± 27
$2\pi^{+}2\pi^{-}3\pi^{0}$			6 ± 2
$2\pi^+2\pi^-$ MM	213 ± 11	208 ± 7	$30 \pm 15^*$
$3\pi^{+}3\pi^{-}$	19 ± 2	21.0 ± 2.5	
$3\pi^{+}3\pi^{-}\pi^{0}$	16 ± 3	8.5 ± 1.5	40 ± 3^{a}
$3\pi^+3\pi^-MM$	16 ± 3	3 ± 1	
Sum	954 ± 18	986 ± 6	970 ± 58

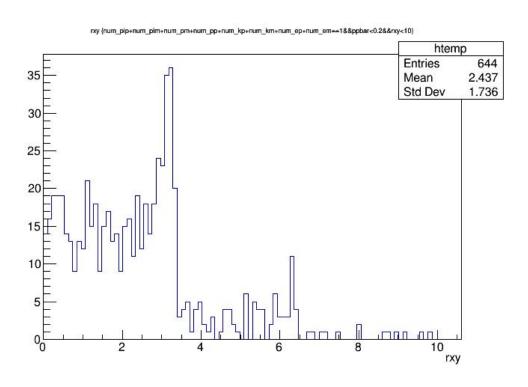
• $\overline{p}n \rightarrow Anything$

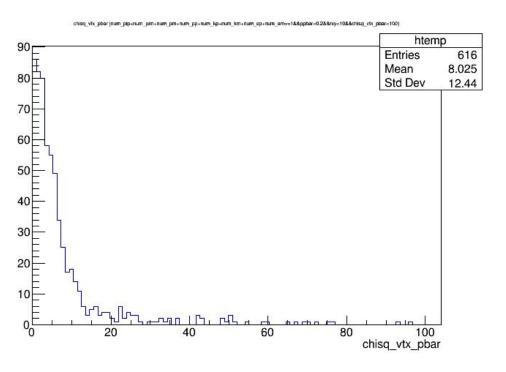
Final state	Frequency (in %)		
$\frac{1}{\pi^- n \pi^0}$	16.4 ± 0.5		
$\pi^-\pi^0$	0.40 ± 0.04		
$\pi^{-}2\pi^{0}$	0.68 ± 0.07		
$\pi^{-}4\pi^{0}$	1.32 ± 0.20		
$2\pi^{-}\pi^{+}n\pi^{0}$	59.7 ± 1.2		
$2\pi^-\pi^+$	1.57 ± 0.21		
$2\pi^{-}\pi^{+}\pi^{0}$	21.8 ± 2.2		
$2\pi^{-}\pi^{+}2\pi^{0}$	6.3 ± 1.1		
$3\pi^{-}2\pi^{+}n\pi^{0}$	23.4 ± 0.7		
$3\pi^{-}2\pi^{+}$	5.15 ± 0.47		
$3\pi^{-}2\pi^{+}\pi^{0}$	15.1 ± 1.0		
$4\pi^{-}3\pi^{+}n\pi^{0}$	0.39 ± 0.07		
Sum	$95.5 \pm 1.5\%$		
Final state	Frequency (in 10^{-4})		
K^0K^-	14.7 ± 2.1		
$K^{0}K^{+}\pi^{-}\pi^{-}$	36.0 ± 4.2		
$K_sK_s\pi^-$	14.7 ± 2.0		
$K_sK_l\pi^-$	21.2 ± 3.6		
$K^{0}K^{+}\pi^{-}\pi^{-}$			
$K^{0}K^{+}\pi^{-}\pi^{-}$ $K^{0}K^{-}\pi^{+}\pi^{-}$	24.8 ± 2.6		
$K^0K^-\pi^+\pi^-$	24.8 ± 2.6 34.2 ± 3.5		
$K^{0}K^{-}\pi^{+}\pi^{-}$ $K_{s}K_{s}\pi^{-}\pi^{0}$	24.8 ± 2.6		
$K^0K^-\pi^+\pi^-$	24.8 ± 2.6 34.2 ± 3.5		
$K^{0}K^{-}\pi^{+}\pi^{-}$ $K_{s}K_{s}\pi^{-}\pi^{0}$ $K^{0}K^{+}\pi^{-}\pi^{-}\pi^{0}$	24.8 ± 2.6 34.2 ± 3.5 25.6 ± 2.8		
$K^{0}K^{-}\pi^{+}\pi^{-}$ $K_{s}K_{s}\pi^{-}\pi^{0}$	24.8 ± 2.6 34.2 ± 3.5 25.6 ± 2.8 1.6 ± 0.9		
$K^{0}K^{-}\pi^{+}\pi^{-}$ $K_{s}K_{s}\pi^{-}\pi^{0}$ $K^{0}K^{+}\pi^{-}\pi^{-}\pi^{0}$ $K_{s}K^{-}\pi^{+}\pi^{-}\pi^{0}$	24.8 ± 2.6 34.2 ± 3.5 25.6 ± 2.8 1.6 ± 0.9 33.6 ± 3.8		
$K^{0}K^{-}\pi^{+}\pi^{-}$ $K_{s}K_{s}\pi^{-}\pi^{0}$ $K^{0}K^{+}\pi^{-}\pi^{-}\pi^{0}$ $K_{s}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $K_{s}K^{-}\omega$	24.8 ± 2.6 34.2 ± 3.5 25.6 ± 2.8 1.6 ± 0.9 33.6 ± 3.8 35.0 ± 5.2		

Back Up: From ZZL's Memo



Inconsistence in the amplitude in 2pi mass spectrum


 \triangleright Clear ρ signal observed in data, also in MC?


Back Up: Rxy and Rz from Vertexfit

Back Up: Vertexfit for one track

- ➤ When fitting with only one charged track in the vertex fit, it seems that rxy directly comes from the POCA point before fitting.
- ➤ The chisq value has not been set with a protection value, but the output appears to be normal.

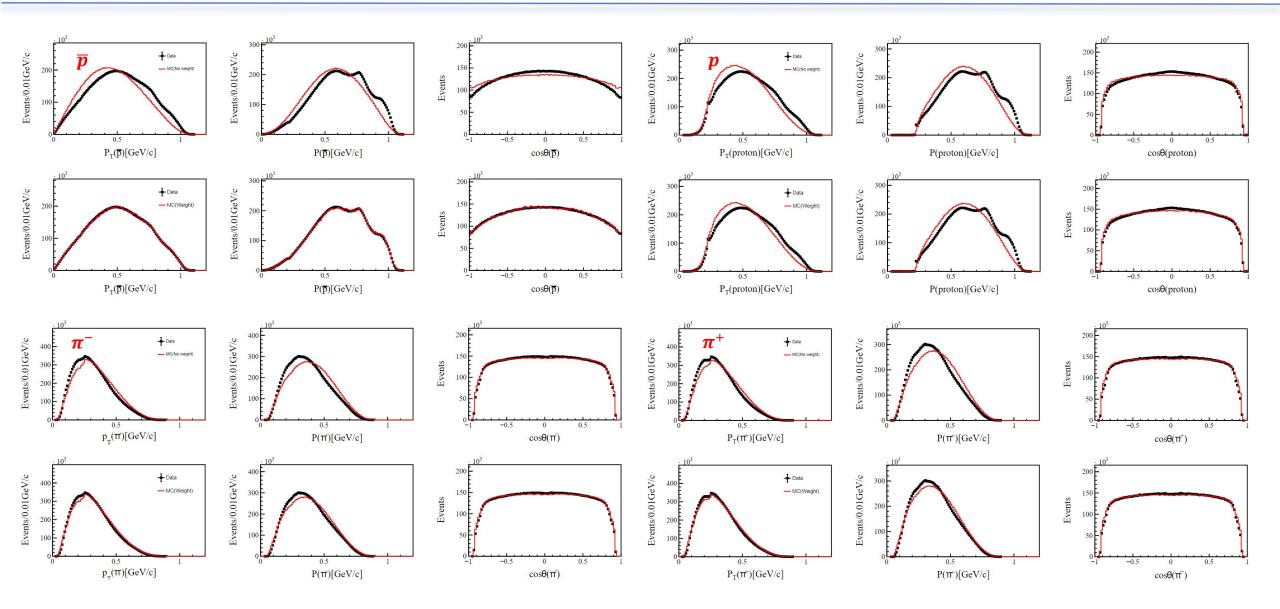
Back Up: MC Truth From G4

```
******* currentTrack->GetTrackStatus() == fStopAndKill && currentT
particle = anti_proton
ParticleID = 4
******Pre ProcessName : hIoni
******Post ProcessName : hFritiofCaptureAtRest
particle = anti_proton nSeco = 18 processName : hFritiofCaptureAtRest
initialMomentum = 106.64635478233 82.389525140197 -126.49583464384
Momentum = 184.83147736094 MeV
 Current Position: 33.33209804948 mm, -31.340794565386 mm
-----HAILIN SONG------
****sectrk->GetParentID() == pbarTrackID*****
****Don't cout the hIoni process*****
ProcessName = hFritiofCaptureAtRest
sectrk Name = e-
Particle Total Energy: 0.51122561100725 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = e-
Particle Total Energy: 0.51103512850412 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = e-
Particle Total Energy: 0.5110445557485 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = e-
Particle Total Energy: 0.51105756290064 MeV
ProcessName = hFritiofCaptureAtRest
<u>sectr</u>k Name = gamma
Particle Total Energy: 7.7115813705462e-05 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = gamma
Particle Total Energy: 0.00010422648777711 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = gamma
Particle Total Energy: 0.0001457113727147 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = gamma
Particle Total Energy: 0.0042427723231634 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = gamma
Particle Total Energy: 0.0061713051973286 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = gamma
Particle Total Energy: 0.031891650644808 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = pi-
```

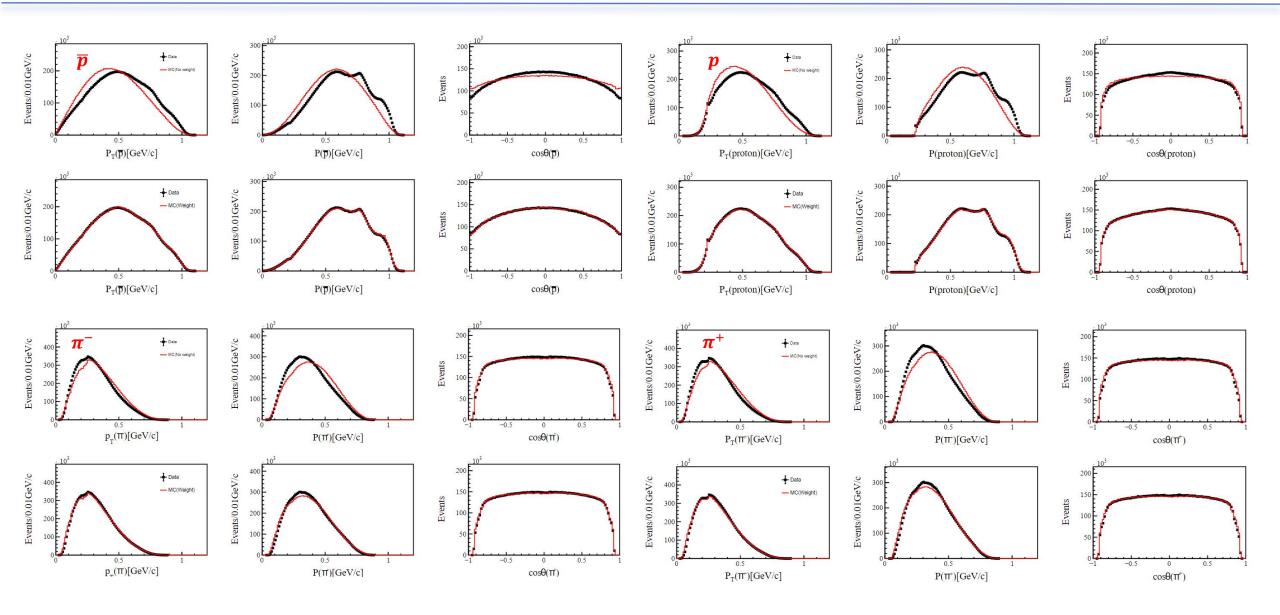
Particle Total Energy: 505.9142822882 MeV

```
Process: hadElastic

Model:


M
```

```
ProcessName = hFritiofCaptureAtRest
sectrk Name = pi+
Particle Total Energy: 395.42849798255 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = pi+
Particle Total Energy: 219.19919866795 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = pi-
Particle Total Energy: 286.70372439695 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = pi0
Particle Total Energy: 446.20149843121 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = neutron
Particle Total Energy: 944.63849020808 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = Li7
Particle Total Energy: 6535.8661967691 MeV
ProcessName = hFritiofCaptureAtRest
sectrk Name = gamma
Particle Total Energy: 0.48262972300109 MeV
num_pp = 0 num_pm = 0 num_pip = 2 num_pim = 2 num_pi0 = 1 num_ep = 0 num_em = 4
num_kp = 0 num_km = 0 num_gam = 7 num_neu = 1 num_antineu = 0 num_others = 1
```


Back Up: MC Truth From G4

```
particle = anti_proton nSeco = 10 processName : anti_protonInelastic
initialMomentum = -201.95065483568 -100.80757319353 -173.14407134911
Momentum = 284.47337879857 MeV
Current Position: 31.493584740201 mm, -15.388123437615 mm
 -----HAILIN SONG-----
****sectrk->GetParentID() == pbarTrackID*****
*****Don't cout the hIoni process******
ProcessName = anti_protonInelastic
sectrk Name = eta
Particle Total Energy: 674.66462378914 MeV
ProcessName = anti_protonInelastic
sectrk Name = pi-
Particle Total Energy: 167.45148121246 MeV
ProcessName = anti_protonInelastic
sectrk Name = pi0
Particle Total Energy: 309.83198907407 MeV
ProcessName = anti_protonInelastic
sectrk Name = pi+
Particle Total Energy: 434.34401256222 MeV
ProcessName = anti_protonInelastic
sectrk Name = pi-
Particle Total Energy: 305.09854529972 MeV
ProcessName = anti_protonInelastic
sectrk Name = neutron
Particle Total Energy: 943.61355852983 MeV
ProcessName = anti_protonInelastic
sectrk Name = gamma
Particle Total Energy: 6.801792755401 MeV
ProcessName = anti_protonInelastic
sectrk Name = gamma
Particle Total Energy: 0.55163622953274 MeV
ProcessName = anti_protonInelastic
sectrk Name = gamma
Particle Total Energy: 0.2610939520787 MeV
ProcessName = anti_protonInelastic
sectrk Name = Au195[1979.490]
Particle Total Energy: 181571.0536617 MeV
num_pp = 0 num_pm = 0 num_pip = 1 num_pim = 2 num_pi0 = 1 num_ep = 0 num_em = 0
num kp = 0 num km = 0 num gam = 3 num neu = 1 num antineu = 0 num others = 2
```

Back Up: only weight \overline{p}

Back Up: only weight \overline{p} and p

Back Up: Study of p^+

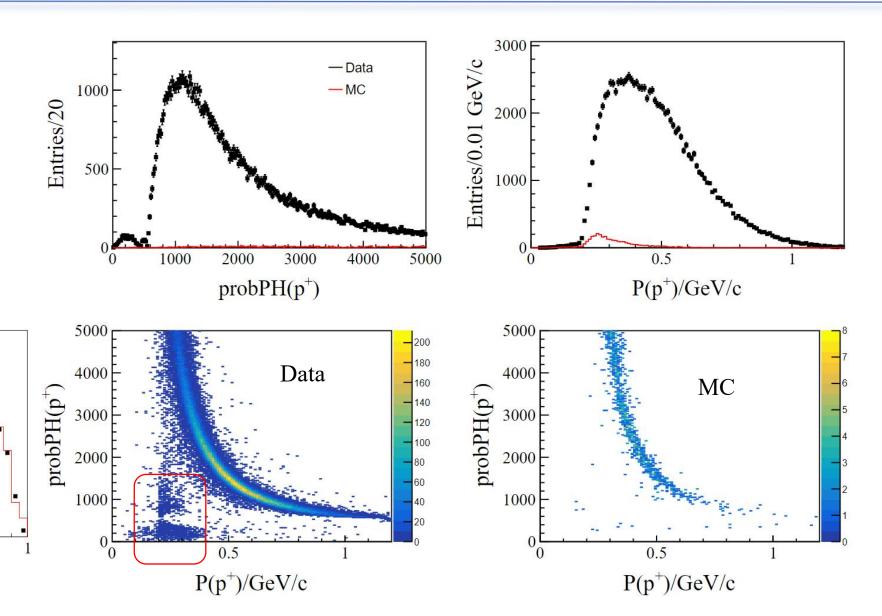
— Data

0.5

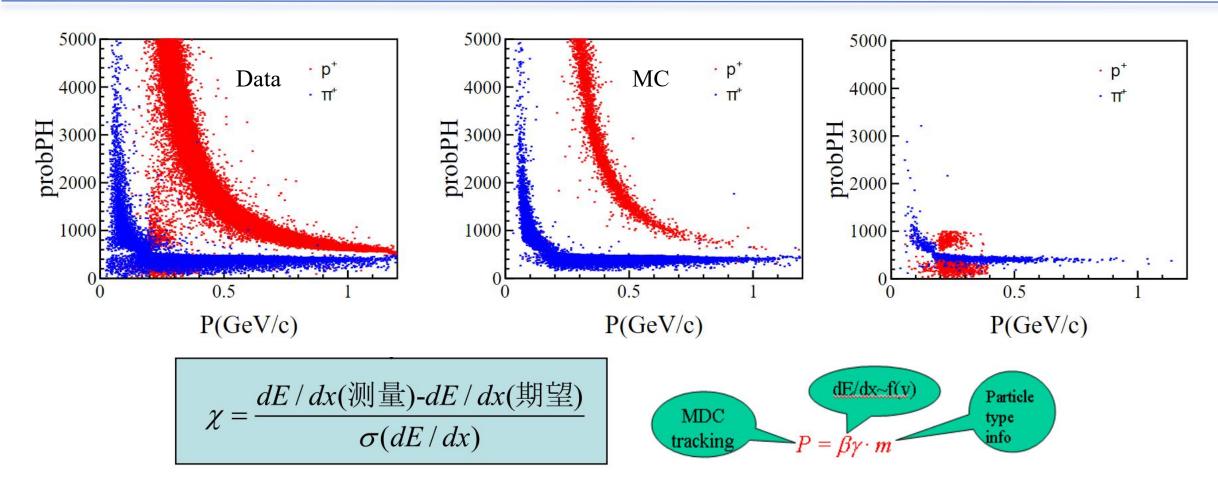
 $\cos\theta(p^+)$

• Select the p^+ with the highest energy for at least one p^+ event.

4000

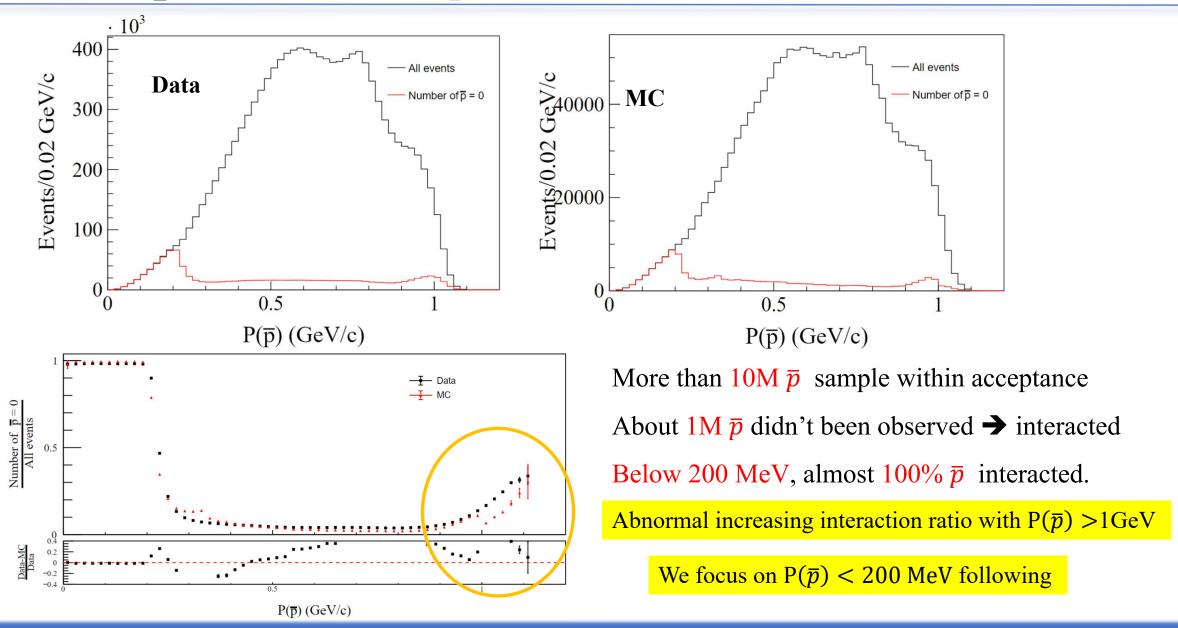

3000

2000

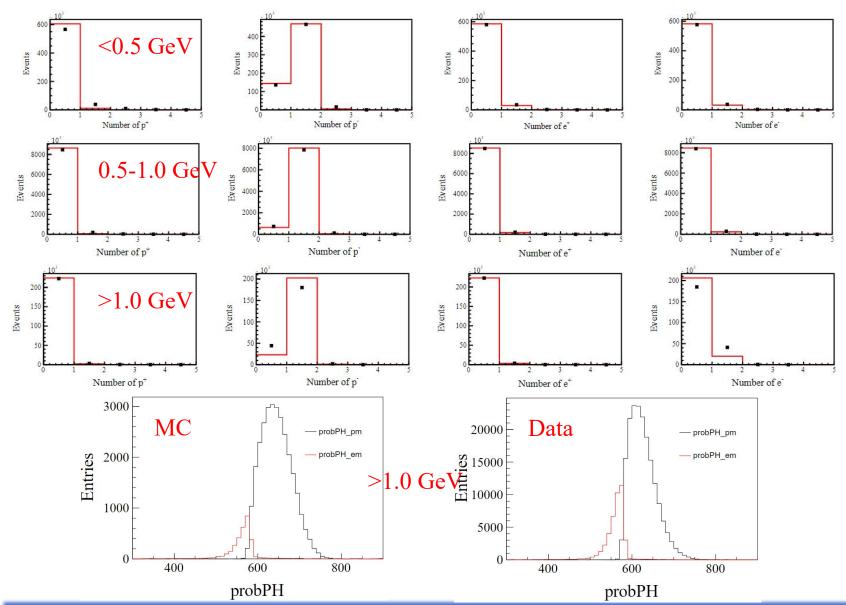

1000

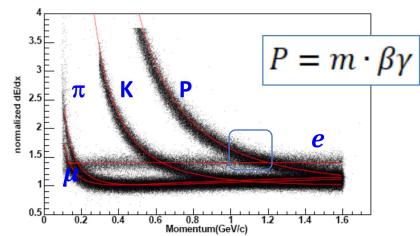
-0.5

Entries/0.05

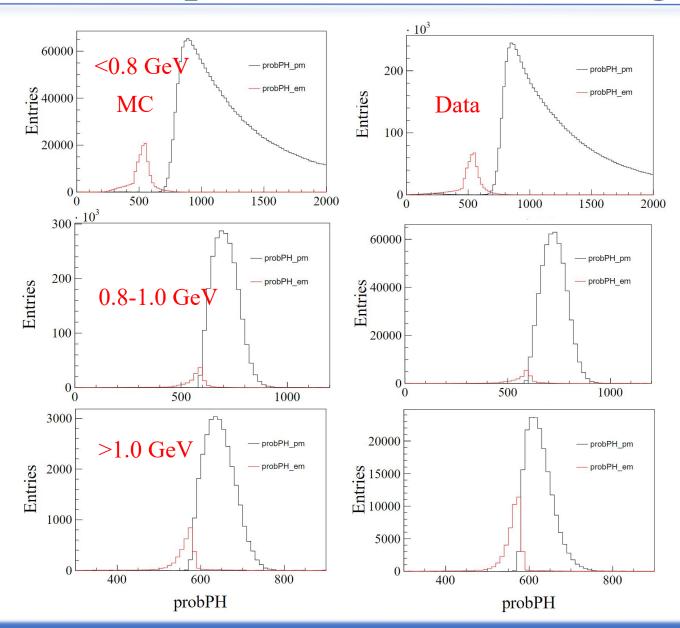


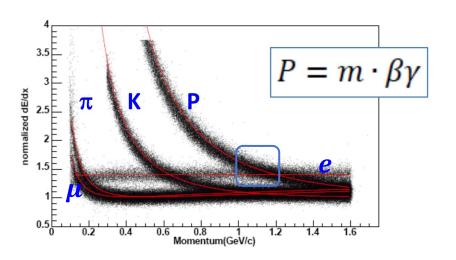
Back Up: Study of p^+




• 根据不同粒子的假设得到不同的χ值,比较χ值大小,可以得到该粒子属于某种粒子的几率,从而实现粒子鉴别

Back Up: Features of $\overline{p}N$ interaction (inclusive)


Back Up: Abnormal increasing interaction ratio



• Just use dedx info for PID, when $P(\bar{p}) > 1$ GeV/c, more antiproton will be misidentified to be electron.

Back Up: Abnormal increasing interaction ratio

