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2This presentation

✤ Hadron-jet correlations in pp collisions at 13.6 TeV (Run 3, New preliminary) 

✤ Hadron-jet correlations in high multiplicity pp collisions at 13 TeV (Run 2) 

✤ Hadron-jet correlations in pp and central Pb–Pb collisions at 5.02 TeV (Run 2)
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3Jet Probes

Jets are defined as collimated sprays of particles originating from initial hard 
scattered partons

without QGP Jet

 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.182501
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3Jet Probes

Jets are defined as collimated sprays of particles originating from initial hard 
scattered partons
Jets in pp collisions → study the strong force

• Well described by pQCD calculations
• Investigate the parton splitting functions in vacuum
• Serves as a reference for jet measurements in heavy-ion collisions to study 

jet quenching
• Searching for QGP droplet formation in small collision systems

without QGP Jet
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3Jet Probes

Jets are defined as collimated sprays of particles originating from initial hard 
scattered partons
Jets in pp collisions → study the strong force

• Well described by pQCD calculations
• Investigate the parton splitting functions in vacuum
• Serves as a reference for jet measurements in heavy-ion collisions to study 

jet quenching
• Searching for QGP droplet formation in small collision systems

Jets in heavy-ion collisions → study the transport properties of the QGP

• Partons interact with QGP and lose energy through medium-induced gluon 
radiations (inelastic) and collisions (elastic) with medium constituents

• Jet(E) → Jet(E′ − ΔE) + soft particles(ΔE)

without QGP Jet

 

Jetwith QGP

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.182501
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4Jet quenching observables
Study structure of QGP by understanding jet modification from medium interaction (quenching)

• Several types of jet observables 
• Jet reconstruction and declustering → substructure (rg, 𝜃g) modification  

• Jet yields and constituents → jet suppression and energy redistribution ( , ) 

• Angular correlation → jet deflection (∆𝜑)
RAA IAA
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4Jet quenching observables
Study structure of QGP by understanding jet modification from medium interaction (quenching)

• Several types of jet observables 
• Jet reconstruction and declustering → substructure (rg, 𝜃g) modification  

• Jet yields and constituents → jet suppression and energy redistribution ( , ) 

• Angular correlation → jet deflection (∆𝜑)
RAA IAA

Inclusive jet measurements show significant 
quenching at high  in central Pb-Pb collisions 
•

pT
pT > 30 GeV/c

RAA =
dNAA/dpT

⟨TAA⟩ dσpp/dpT

QGP medium

QCD vacuum

PLB 849 (2024) 138412
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5Jet quenching observables

hadron-jet correlations
➡Semi-inclusive measurements of a jet 

recoiling from a trigger (e.g. γ-jet , Z-jet, 
or hadron-jet)  

Apply statistical, data driven-approach 
for background yield suppression

Study structure of QGP by understanding jet modification from medium interaction (quenching)

• Several types of jet observables 
• Jet reconstruction and declustering → substructure (rg, 𝜃g) modification  

• Jet yields and constituents → jet suppression and energy redistribution ( , ) 

• Angular correlation → jet deflection (∆𝜑)
RAA IAA
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6Hadron-jet correlations
• Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of 

combinatorial background by varying the trigger track intervals → access low , large R jets pT

• Opening angle ( ) measurements of the recoil jet relative to the trigger axis provide additional 
insight into QGP properties 

Δφ
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6Hadron-jet correlations
• Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of 

combinatorial background by varying the trigger track intervals → access low , large R jets pT

• Opening angle ( ) measurements of the recoil jet relative to the trigger axis provide additional 
insight into QGP properties 

Δφ
→ broadening transverse to its initial direction
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6Hadron-jet correlations

1. L Chen, Phys. Lett. B 773 (2017) 672 
2. Phys.Lett.B 763 (2016) 208-212 
3.  JHEP 01 (2019) 172 

• Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of 
combinatorial background by varying the trigger track intervals → access low , large R jets pT

• Opening angle ( ) measurements of the recoil jet relative to the trigger axis provide additional 
insight into QGP properties 

Δφ

• In vacuum: transverse broadening due to gluon emission (Sudakov broadening)[1,2]

→ broadening transverse to its initial direction

https://www.sciencedirect.com/science/article/pii/S0370269317307402
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• Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of 
combinatorial background by varying the trigger track intervals → access low , large R jets pT

• Opening angle ( ) measurements of the recoil jet relative to the trigger axis provide additional 
insight into QGP properties 

Δφ

• In vacuum: transverse broadening due to gluon emission (Sudakov broadening)[1,2]

• In medium: additional broadening due to scatterings with medium constituents[1,2]

• Transverse broadening due to multiple soft scatterings in the QGP

‣ Related to transport coefficient ̂q ∼ ⟨k2
⊥⟩/L ∼ ⟨Δφ2⟩/L

→ broadening transverse to its initial direction

https://www.sciencedirect.com/science/article/pii/S0370269317307402
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• Opening angle ( ) measurements of the recoil jet relative to the trigger axis provide additional 
insight into QGP properties 

Δφ

• In vacuum: transverse broadening due to gluon emission (Sudakov broadening)[1,2]

• In medium: additional broadening due to scatterings with medium constituents[1,2]

• Transverse broadening due to multiple soft scatterings in the QGP

‣ Related to transport coefficient ̂q ∼ ⟨k2
⊥⟩/L ∼ ⟨Δφ2⟩/L

• Large-angle deflection ( ) of hard partons off quasi-particle[3]?Δφ < π

→ broadening transverse to its initial direction
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• Measurements of semi-inclusive jets recoiling from a trigger hadron provide a good handle of 
combinatorial background by varying the trigger track intervals → access low , large R jets pT

• Opening angle ( ) measurements of the recoil jet relative to the trigger axis provide additional 
insight into QGP properties 

Δφ

• In vacuum: transverse broadening due to gluon emission (Sudakov broadening)[1,2]

• In medium: additional broadening due to scatterings with medium constituents[1,2]

• Transverse broadening due to multiple soft scatterings in the QGP

‣ Related to transport coefficient ̂q ∼ ⟨k2
⊥⟩/L ∼ ⟨Δφ2⟩/L

• Large-angle deflection ( ) of hard partons off quasi-particle[3]?Δφ < π

→ broadening transverse to its initial direction
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)stat0.015(± = 0.164σPYTHIA + Pb-Pb: 

ALICE
 = 2.76 TeVNNs0-10% Pb-Pb 

 = 0.4R charged jets, TkAnti-
c < 60 GeV/reco,ch

T,jet
p40 < 

 TT{8,9}− TT{20,50}

Statistical errors only

ALI−PUB−93881

JHEP 09 (2015) 170

h-jet (ALICE Run1)
No medium-induced acoplanarity 
broadening observed within uncertainties

https://www.sciencedirect.com/science/article/pii/S0370269317307402
https://link.springer.com/article/10.1007/JHEP09(2015)170
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7QGP-like behavior in small collision systems
• Effects considered as signatures of QGP formation in heavy-ion collisions are observed in small 

systems: collectivity, strangeness enhancement …

Eur. Phys. J. C 80 (2020) 693

https://link.springer.com/article/10.1140/epjc/s10052-020-8125-1
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7QGP-like behavior in small collision systems
• Effects considered as signatures of QGP formation in heavy-ion collisions are observed in small 

systems: collectivity, strangeness enhancement …
• However, no jet quenching observed so far 

Eur. Phys. J. C 80 (2020) 693➡ How does jet production behave in high-multiplicity environments? 

➡ What is the limit for QGP formation?

Phys. Lett. B 843 (2022) 137649

Two particle correlations

https://link.springer.com/article/10.1140/epjc/s10052-020-8125-1
https://doi.org/10.1016/j.physletb.2022.137649
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8Jet measurements in ALICE (Run 2)

• V0 (V0C + V0A) 
•  

• Event trigger 

• Event multiplicity, centrality determination

−3.7 < η < − 1.7, 2.8 < η < 5.1
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8Jet measurements in ALICE (Run 2)

• V0 (V0C + V0A) 
•  

• Event trigger 

• Event multiplicity, centrality determination

−3.7 < η < − 1.7, 2.8 < η < 5.1

• ITS (Inner Tracking System) 
•  

• Primary vertex reconstruction 

• Charged particle tracking

|η | < 0.9, 0 < φ < 2π

• TPC (Time Projection Chamber) 
•  

• Charged particle tracking 

• Particle identification

|η | < 0.9, 0 < φ < 2π

Charged-particle tracks and jets
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9Jet measurements in ALICE (Run 3)
Fast Interaction Trigger (FT0C + FT0A)

•  

• Luminosity, event trigger 
• Centrality, event plane 
• Interaction time

−3.3 < η < − 2.1, 3.5 < η < 4.9

https://alice-collaboration.web.cern.ch/menu_proj_items/FIT
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9Jet measurements in ALICE (Run 3)

•  
• 4 layers of GEM 
• 50 kHz continuous readout

|η | < 0.9, 0 < φ < 2π

Time Projection Chamber

Fast Interaction Trigger (FT0C + FT0A)

•  

• Luminosity, event trigger 
• Centrality, event plane 
• Interaction time

−3.3 < η < − 2.1, 3.5 < η < 4.9

New Inner Tracking System

•  

• New Si inner tracker 
• 3 inner layers 0.36% X0 each 
• 50 kHz continuous readout

|η | < 1.3, 0 < φ < 2π

https://cds.cern.ch/record/2758225/plots#0
https://alice-collaboration.web.cern.ch/menu_proj_items/FIT
https://cds.cern.ch/record/2848181/plots
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10Analysis procedure and observables
• Select events based on the presence of a high-  ‘trigger’ hadron (track)pT
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10Analysis procedure and observables
• Select events based on the presence of a high-  ‘trigger’ hadron (track)pT

• Do jet reconstruction on these events
• Count jets recoiling from the trigger hadron as a function of  and pT Δφ
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10Analysis procedure and observables
• Select events based on the presence of a high-  ‘trigger’ hadron (track)pT

• Do jet reconstruction on these events
• Count jets recoiling from the trigger hadron as a function of  and pT Δφ
• Measure trigger-normalised yield of jets recoiling from a trigger hadron

1
NAA

trig

d2NAA
jet

dηjet dpT,jet dΔφjet
p trig

T ∈TT

= ( 1
σAA→h+X

⋅
d2σAA→h+jet+X

dηjet dpT,jet dΔφjet )
pT,h∈TT
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10Analysis procedure and observables
• Select events based on the presence of a high-  ‘trigger’ hadron (track)pT

• Do jet reconstruction on these events
• Count jets recoiling from the trigger hadron as a function of  and pT Δφ
• Measure trigger-normalised yield of jets recoiling from a trigger hadron

1
NAA

trig

d2NAA
jet

dηjet dpT,jet dΔφjet
p trig

T ∈TT

= ( 1
σAA→h+X

⋅
d2σAA→h+jet+X

dηjet dpT,jet dΔφjet )
pT,h∈TT

• Recoil jets measured in two exclusive trigger track (TT) intervals: 
TT signal:  GeV/c, TT reference:  GeV/c  (except pp 13 TeV, TTS [20,30], TTR: [6,7])pT ∈ (20, 50) pT ∈ (5, 7)
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10Analysis procedure and observables
• Select events based on the presence of a high-  ‘trigger’ hadron (track)pT

• Do jet reconstruction on these events
• Count jets recoiling from the trigger hadron as a function of  and pT Δφ
• Measure trigger-normalised yield of jets recoiling from a trigger hadron

1
NAA

trig

d2NAA
jet

dηjet dpT,jet dΔφjet
p trig

T ∈TT

= ( 1
σAA→h+X

⋅
d2σAA→h+jet+X

dηjet dpT,jet dΔφjet )
pT,h∈TT

• Recoil jets measured in two exclusive trigger track (TT) intervals: 
TT signal:  GeV/c, TT reference:  GeV/c  (except pp 13 TeV, TTS [20,30], TTR: [6,7])pT ∈ (20, 50) pT ∈ (5, 7)

• Observables defined as the difference between trigger-normalised recoil jet yields in two trigger track intervals to 
remove uncorrelated combinational background

Δrecoil (pT,jet, Δφ) =
1

Ntrig

d3Njet

dηjet dpT,jet dΔφ
p trig

T ∈TTSig

− cRef ⋅
1

Ntrig

d3Njet

dηjet dpT,jet dΔφ
p trig

T ∈TTRef

• : “alignment” constant extracted from datacRef

• Allow for precise measurements down to very low  and large RpT
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11Raw yield distributions

• Recoil jet  vs Δ𝜑 2-dimensional distributions in two trigger track  intervalspT pT

Δrecoil (pT,jet, Δφ) =
1

Ntrig

d3Njet

dηjet dpT,jet dΔφ
p trig

T ∈TTSig

− cRef ⋅
1

Ntrig

d3Njet

dηjet dpT,jet dΔφ
p trig

T ∈TTRef
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11Raw yield distributions

• Recoil jet  vs Δ𝜑 2-dimensional distributions in two trigger track  intervalspT pT

Δrecoil (pT,jet, Δφ) =
1

Ntrig

d3Njet

dηjet dpT,jet dΔφ
p trig

T ∈TTSig

− cRef ⋅
1

Ntrig

d3Njet

dηjet dpT,jet dΔφ
p trig

T ∈TTRef

Projection to 
 with  pT,jet Δφ

|Δφ − π | < 0.6
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12Fully-corrected Δrecoil ( ) distributions in pp collisionspT
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• Fully-corrected  distributions for  in pp collisions at 5.02, 13, 13.6 TeVΔrecoil(pT) R = 0.4
• All model calculations, except JEWEL, reproduce the ALICE data within uncertainties

5 < V0M /〈V0M⟩ < 9
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• Fully-corrected  distributions for  in pp collisions at 5.02, 13, 13.6 TeVΔrecoil(pT) R = 0.4
• All model calculations, except JEWEL, reproduce the ALICE data within uncertainties
• A yield suppression in the HM collisions with respect to MB events → independent of pT

5 < V0M /〈V0M⟩ < 9
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13Fully corrected yield ratio: R = 0.2 / R = 0.4

• The jet yield ratios of inclusive and simi-inclusive for R = 
0.2 / 0.4

• Agreement between inclusive jets and semi-inclusive at 
high  pT
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13Fully corrected yield ratio: R = 0.2 / R = 0.4

• The jet yield ratios of inclusive and simi-inclusive for R = 
0.2 / 0.4

• Agreement between inclusive jets and semi-inclusive at 
high  pT

• Well described by PYTHIA

• Good agreement between Run 2 and Run 3 results
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13Fully corrected yield ratio: R = 0.2 / R = 0.4

• The jet yield ratios of inclusive and simi-inclusive for R = 
0.2 / 0.4

• Agreement between inclusive jets and semi-inclusive at 
high  pT

• Well described by PYTHIA

• Good agreement between Run 2 and Run 3 results

• Difference at low  due to TT selection pT

• Enhancement in  recoil jet yield at low  R = 0.2 pT

 → preference for more, small R jets w.r.t. large R jets to be 
reconstructed?
→ bias towards LO processes suppressed when   ?pjet

T < ptrig
T
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14Fully-corrected Δrecoil ( ) distributions in pp & Pb-PbpT

•  distributions measured down to  ~ 7 GeV/c in pp and Pb-Pb collisions Δrecoil(pT) pT

5.02 TeV
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14Fully-corrected Δrecoil ( ) distributions in pp & Pb-PbpT

•  distributions measured down to  ~ 7 GeV/c in pp and Pb-Pb collisions Δrecoil(pT) pT

Among the lowest jet measurement in Pb-Pb collisions with ALICE at the LHC!

5.02 TeV
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15 - recoil jet yield modification in Pb-Pb collisionsIAA(pT)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)pp

• Jet yield enhancement at low  pT

→ hint of energy recovery in low  jets?pT
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15 - recoil jet yield modification in Pb-Pb collisionsIAA(pT)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)pp

• Jet yield enhancement at low  pT

→ hint of energy recovery in low  jets?pT

• Jet yield suppression at 20 < pT,jet < 60 GeV/c

→ Jet energy loss
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15 - recoil jet yield modification in Pb-Pb collisionsIAA(pT)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)pp

• Jet yield enhancement at low  pT

→ hint of energy recovery in low  jets?pT

• Jet yield suppression at 20 < pT,jet < 60 GeV/c

→ Jet energy loss

• Rising trend with increasing jet pT

 → Interplay of jet quenching and jet production or 
hadron energy loss?0 20 40 60 80 100 120 140

)c (GeV/
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p
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Phys.Lett.B 854 (2024) 138739

https://www.sciencedirect.com/science/article/pii/S0370269324002971?via=ihub
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16 compared to modelsIAA(pT)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)pp

JETSCAPE with Pb-Pb tune: 
1903.07706,  Phys.Rev.C 107 (2023) 3

Multi-stage energy loss based on MATTER (high virtuality) + LBT 
(low virtuality)

JEWEL: perturbative treatment to jet quenching
arXiv:1311.0048, https://jewel.hepforge.org/

Includes collisional and radiative parton energy loss mechanisms in a 
pQCD approach. medium response effects via the treatment of 
‘recoils’

Hybrid Model: strong (DGLAP) / weak (AdS/CFT) coupling model 
,JHEP 02 (2022) 175, JHEP01(2019)172

With/without elastic energy loss (i.e ‘Moliere’ scattering)
medium response via with and without wake.
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https://arxiv.org/pdf/1903.07706.pdf
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202204.01163
https://arxiv.org/abs/1311.0048
https://inspirehep.net/literature/1952275
https://inspirehep.net/literature/1685742
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16 compared to modelsIAA(pT)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)pp
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• The rising trend is qualitatively described by all 
predictions 

•  JETSCAPE largely reproduces the  distributions 

• Hybrid Model and JEWEL predictions overestimate 
the suppression at high  

• Hybrid Models with wake effect and JEWEL with 
recoils on seem to catch the yield enhancement at low  

• Medium response could be responsible for the yield 
enhancement

IAA

pT

pT
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17Recoil jet  distributionsΔφ

• Recoil jet  vs Δ𝜑 2-dimensional distributions in two trigger track  intervals 
•  distributions measured for the two TT classes using 2D projections
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18Δrecoil ( ) distributions in pp at 13 TeV: Δφ R = 0.4
HM event activity selection: 5 < V0M /〈V0M⟩ < 9

• Suppression of back-to-back jet production 

• Broadening of HM acoplanarity distribution with 
respect to MB 

• The effect is stronger for low  jets  

• Resembles jet quenching effects?

pT
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18Δrecoil ( ) distributions in pp at 13 TeV: Δφ R = 0.4
HM event activity selection: 5 < V0M /〈V0M⟩ < 9

• Suppression of back-to-back jet production 

• Broadening of HM acoplanarity distribution with 
respect to MB 

• The effect is stronger for low  jets  

• Resembles jet quenching effects?

pT
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18Δrecoil ( ) distributions in pp at 13 TeV: Δφ R = 0.4
HM event activity selection: 5 < V0M /〈V0M⟩ < 9

• Suppression of back-to-back jet production 

• Broadening of HM acoplanarity distribution with 
respect to MB 

• The effect is stronger for low  jets  

• Resembles jet quenching effects?

pT

• Quantitative comparison to PYTHIA 8 Monash 
(does not account for jet quenching effects) 
shows similar suppression pattern 

• Indicate the effect is not from the jet-
medium interaction

• Use PYTHIA to explore the origin of the 
effect  → HM event selection
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19PYTHIA simulation

• Larger enhancement in V0C resulting from the asymmetric pseudorapidity acceptance of V0A and V0C in HM events  
→ significant bias in the distribution of high-  recoil jets 

• Broader jets are selected more in the V0C for HM events could hide the jet-medium interaction signal 
→ Jet quenching signals can be masked by effects coming from trigger

pT

Recoil jet pseudorapidity distribution vs. event activity
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20Δrecoil ( ) distributions in pp at 5.02 TeV: Δφ R = 0.4

• Corrected  distributions for R = 0.4 in different jet   bins (10-20-30-50-100 GeV/c)Δrecoil(Δφ) pT
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20Δrecoil ( ) distributions in pp at 5.02 TeV: Δφ R = 0.4

• Corrected  distributions for R = 0.4 in different jet   bins (10-20-30-50-100 GeV/c)Δrecoil(Δφ) pT

• Described well by different model calculations within uncertainties
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21Δrecoil ( ) distributions in pp & Pb-PbΔφ

pp 
Pb-Pb
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21Δrecoil ( ) distributions in pp & Pb-PbΔφ

• Significant acoplanarity 
broadening for  and 

 at low  interval
R = 0.4

R = 0.5 pT

pp 
Pb-Pb
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22Broadening effect observed with ALICE & STAR

• Significant acoplanarity 
broadening for  and  
at low  interval 

• Similar observation also found by 
STAR

R = 0.4 R = 0.5
pT
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23 - recoil jet angular modification in Pb-Pb collisionsIAA(Δφ)

• Significant broadening for 
pT ∈ [10,20] GeV/c
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23 - recoil jet angular modification in Pb-Pb collisionsIAA(Δφ)

• Significant broadening for 
pT ∈ [10,20] GeV/c

• No broadening or suppression for 
 pT ∈ [20,30] GeV/c
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23 - recoil jet angular modification in Pb-Pb collisionsIAA(Δφ)

• Significant broadening for 
pT ∈ [10,20] GeV/c

• No broadening or suppression for 
 pT ∈ [20,30] GeV/c

• Jet yield suppression for 
pT ∈ [30,50] GeV/c
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24 compared to modelsIAA(Δφ)

IAA ≡
Δrecoil (Δφ)AA

Δrecoil (Δφ)pp
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R = 0.4
R = 0.40 − 10 %

JETSCAPE with Pb-Pb tune: 
1903.07706,  Phys.Rev.C 107 (2023) 3

Multi-stage energy loss based on MATTER (high virtuality) + LBT (low 
virtuality)

JEWEL: perturbative treatment to jet quenching
arXiv:1311.0048, https://jewel.hepforge.org/

Includes collisional and radiative parton energy loss mechanisms in a pQCD 
approach. medium response effects via the treatment of ‘recoils’

Hybrid Model: strong (DGLAP) / weak (AdS/CFT) coupling model 
,JHEP 02 (2022) 175, JHEP01(2019)172

With/without elastic energy loss (i.e ‘Moliere’ scattering)
medium response via with and without wake.
pQCD@LO + Sudakov broadening:
Phys.Lett.B 773 (2017) 672 

Leading order pQCD, azimuthal broadening via jet transport coefficient 

https://arxiv.org/pdf/1903.07706.pdf
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202204.01163
https://arxiv.org/abs/1311.0048
https://inspirehep.net/literature/1952275
https://inspirehep.net/literature/1685742
https://inspirehep.net/literature/1474410
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24 compared to modelsIAA(Δφ)

IAA ≡
Δrecoil (Δφ)AA

Δrecoil (Δφ)pp
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• JETSCAPE and pQCD w/ 
broadening reasonably describe the 
data for jet  → 
lacking precision to resolve the 
difference between two  values 

• JEWEL (recoils-on) describes well 
the  in-all  bins 

• Hybrid model captures the yield 
enhancement, but no broadening 
effects are seen when including 
elastic and wake components

pT ∈ [20,50] GeV/c

̂q

IAA pT
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25 vs IAA(Δφ) R
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T,ch jet
p30 < 

ALICE 
10 %−Pb 0− = 5.02 TeV, PbNNs

TkCh-particle jets, anti-
 TT{5,7}− TT{20,50}

ALI-PUB-555709

IAA ≡
Δrecoil (Δφ)AA

Δrecoil (Δφ)pp

• Transition to broadening from R = 0.2 to R = 0.4 for  → soft particles from the 
medium response clustered inside a jet scale with 

pT ∈ [10,20] GeV/c
R2
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25 vs IAA(Δφ) R
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c < 50 GeV/
T,ch jet
p30 < 

ALICE 
10 %−Pb 0− = 5.02 TeV, PbNNs

TkCh-particle jets, anti-
 TT{5,7}− TT{20,50}

ALI-PUB-555709

IAA ≡
Δrecoil (Δφ)AA

Δrecoil (Δφ)pp

• Transition to broadening from R = 0.2 to R = 0.4 for  → soft particles from the 
medium response clustered inside a jet scale with 

pT ∈ [10,20] GeV/c
R2

• All features of distribution reproduced by JEWEL with recoils on → observed broadening consistent 
with medium response rather than Molière scattering
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26Summary and outlook
• Search for QGP signatures in high multiplicity pp collisions  

• Jet quenching like effects masked by generic event selection bias 

• First observation of significant low-  jet yield and large-angle enhancement in Pb-Pb collisions with ALICE!  

• Medium response is favored instead of Molière scattering as the cause for both effects 

• First look at recoil jet spectra in Run 3

pT
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27Next steps - precise characterisation of quenching effects

• Possible origins: in-medium hard scattering, multiple soft scattering, jet fragments, medium response  
    → Study profile and substructure measurements of jets

2 2.5 3
 (rad)ϕ∆

1

10

AAI

c < 20 GeV/
T,ch jet
p10 < 

2 2.5 3
 (rad)ϕ∆

JEWEL:
recoils off
recoils on, 4MomSub

 = 0.2R
 = 0.4R
 = 0.5R

c < 30 GeV/
T,ch jet
p20 < 

2 2.5 3
 (rad)ϕ∆

c < 50 GeV/
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TkCh-particle jets, anti-
 TT{5,7}− TT{20,50}

ALI-PUB-555709

Characterise broadening
Run3: Hadron-jet 
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27Next steps - precise characterisation of quenching effects

• Possible origins: in-medium hard scattering, multiple soft scattering, jet fragments, medium response  
    → Study profile and substructure measurements of jets
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 = 0.2R
 = 0.4R
 = 0.5R

c < 30 GeV/
T,ch jet
p20 < 
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c < 50 GeV/
T,ch jet
p30 < 

ALICE 
10 %−Pb 0− = 5.02 TeV, PbNNs

TkCh-particle jets, anti-
 TT{5,7}− TT{20,50}

ALI-PUB-555709

Characterise broadening
Run3: Hadron-jet 

• Looking forward to further studies with Run 3 data with ALICE  ~~ investigate recoil jet substructure including in Pb-Pb
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28BACKUP
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29Medium response to propagating parton

• Jets lose energy due to interaction with medium constituents 

➡  Medium modified by jets!
G.-Y. Qin, A. Majumder, H. Song, and U. Heinz, 
Phys. Rev. Lett. 103, 152303 (2009)

Expectations: “wake effects” 

Enhancement around jet 

Depletion opposite to jet

• Insert out-of-equilibrium probe → see how the medium responds 

➡  transport coefficients, equation of state
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30Recoil jet  distributionspT

• Recoil jet  distributions in two trigger track  intervals are then obtained from 2D projection 

• Combinational background uncorrelated with the trigger 

• Small background contribution in pp, much larger in Pb-Pb 

• Combinatorial background can be removed by taking the difference of recoil jet distributions in two TT intervals

pT pT

Δrecoil (pT,jet, Δφ) =
1

Ntrig

d3Njet

dηjet dpT,jet dΔφ
p trig

T ∈TTSig

− cRef ⋅
1

Ntrig

d3Njet

dηjet dpT,jet dΔφ
p trig

T ∈TTRef

pp Pb-Pb
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30Recoil jet  distributionspT

• Recoil jet  distributions in two trigger track  intervals are then obtained from 2D projection 

• Combinational background uncorrelated with the trigger 

• Small background contribution in pp, much larger in Pb-Pb 

• Combinatorial background can be removed by taking the difference of recoil jet distributions in two TT intervals

pT pT

Δrecoil (pT,jet, Δφ) =
1

Ntrig

d3Njet

dηjet dpT,jet dΔφ
p trig

T ∈TTSig

− cRef ⋅
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31Raw distribution in pp 13 TeV
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32PYTHIA simulation

• HM event selection  
→ significant bias in the distribution of high-  recoil jets, enhancing jets in the backward detector acceptance (V0C) 

• V0A and V0C have asymmetric coverage 

• Jet quenching signals can be masked by effects coming from trigger

pT
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33Fully-corrected Δrecoil ( ) distributions in pp collisionspT

• Fully-corrected  distributions for R = 0.2, 0.4, and 0.5 in pp collisionsΔrecoil(pT)
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Data fitted with the function: 
Δ(pT) = p0 exp(−p1 × pT) + p2 × (pT)p3
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33Fully-corrected Δrecoil ( ) distributions in pp collisionspT

PYTHIA (8.125, Monash 2013 tune)：LO pQCD 
calculation

 arXiv:1404.5630


POWHEG: NLO pQCD calculation

arXiv:hep-ph/0409146


JETSCAPE PP19 tune: based on PYTHIA8, with 
modified parton shower. 

arXiv:1910.05481


JEWEL vaccum: based on PYTHIA6, which has 
no medium related parameters (no medium)

arXiv:1311.0048,  https://jewel.hepforge.org/

• Fully-corrected  distributions for R = 0.2, 0.4, and 0.5 in pp collisionsΔrecoil(pT)

• The model calculations except JEWEL can reproduce the ALICE data within uncertainties
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https://arxiv.org/abs/1404.5630
https://arxiv.org/abs/hep-ph/0409146
https://arxiv.org/abs/1910.05481
https://arxiv.org/abs/1311.0048
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34 - recoil jet yield modification in Pb-Pb collisionsIAA(pT)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)pp
IAA ≡

Δrecoil (pT)AA

Δrecoil (pT)ppR = 0.20 − 10 %

JETSCAPE with Pb-Pb tune: 
1903.07706,  Phys.Rev.C 107 (2023) 3

Multi-stage energy loss MATTER+LBT

JEWEL:
arXiv:1311.0048, https://jewel.hepforge.org/

Includes collisional and radiative parton energy loss 
mechanisms in a pQCD approach. medium response 

effects via treatment of ‘recoils’

Hybrid Model: 
,JHEP 02 (2022) 175, JHEP01(2019)172

With/without elastic energy loss (i.e ‘Moliere’ scattering)
medium response via with and without wake.
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R = 0.2

https://arxiv.org/pdf/1903.07706.pdf
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202204.01163
https://arxiv.org/abs/1311.0048
https://inspirehep.net/literature/1952275
https://inspirehep.net/literature/1685742
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34 - recoil jet yield modification in Pb-Pb collisionsIAA(pT)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)pp
IAA ≡

Δrecoil (pT)AA

Δrecoil (pT)ppR = 0.20 − 10 %
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R = 0.2

• The rising trend is qualitatively described by all 
predictions 

•  JETSCAPE largely reproduces the  
distributions 

• Hybrid Model and JEWEL predictions 
overestimate the suppression at high  

• JEWEL calculations seems to be consistent with 
measurements at low 

IAA

pT

pT
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35 - recoil jet yield modification in Pb-Pb collisionsIAA(pT)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)ppR = 0.50 − 10 %
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35 - recoil jet yield modification in Pb-Pb collisionsIAA(pT)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)ppR = 0.50 − 10 %
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R = 0.5

• R=0.5 consistent with the unit (no suppression and 
enhancement)

• Little suppression captured by JEWEL (recoils 
on)  

• Indication of intra-jet energy recovery within cone 
radius~0.5 for mid- ?  

• Redistribution of energy for R=0.5 jets more 
challenging for models

pT
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36Fully corrected yield ratio: R = 0.2 / R = 0.4

• Ratio of  distributions for R = 0.2 / 0.4 and R = 0.2 / 0.5 

• Well described by JETSCAPE and PYTHIA 

• Consistent with inclusive charged jet cross section ratios at high   

• Difference at low  due to TT selection

Δrecoil(pT)

pT

pT



Yongzhen HOU 
yongzhen.hou@cern.ch

USTC-PNP-Nuclear Physics Mini Workshop Series                                                                                                                                                  2024/09/29                           

37

• Comparison the ratio of  between pp and Pb-Pb collisions Δrecoil(pT)

Fully corrected yield ratio: compared to Pb-Pb
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37

• Comparison the ratio of  between pp and Pb-Pb collisions Δrecoil(pT)

• At middle ,  the ratios for Pb–Pb collisions are lower than those for pp collisions → 
indicating significant medium-induced intra-jet broadening in that region.  

pT

Fully corrected yield ratio: compared to Pb-Pb



Yongzhen HOU 
yongzhen.hou@cern.ch

USTC-PNP-Nuclear Physics Mini Workshop Series                                                                                                                                                  2024/09/29                           

38 - recoil jet angular modification in Pb-Pb collisionsIAA(Δφ)

• Expected that high  hadrons leading fragment of jet originating from QGP surface (‘surface bias’) 

•  : suppression - surface bias picture holds 

•  : trigger hadron may not be leading fragment or from higher order process - interplay between jet and 
hadron 

• New insight into interplay between hadron and jet suppression

pT

pjet
T ∼ ptrig

T

pjet
T ≫ ptrig

T
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 - recoil jet angular modification in Pb-Pb collisionsIAA(Δφ)

IAA ≡
Δrecoil (pT)AA

Δrecoil (pT)pp
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• Expected that high  hadrons leading fragment of 

jet originating from QGP surface (‘surface bias’) 

•  : suppression - surface bias picture 

holds 

•  : trigger hadron may not be leading 

fragment or from higher order process - interplay 
between jet and hadron 

• New insight into interplay between hadron and jet 
suppression

pT

pjet
T ∼ ptrig

T

pjet
T ≫ ptrig

T

|Δφ − π | < 0.6
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40Run 1 hadron+jet measurement

ALICE: JHEP 09 (2015) 170

• Background-subtracted yield of jets recoiling from a high- trigger hadron: 

• Suppression with respect to a pp (PYTHIA) reference 

• No medium-induced broadening within experimental uncertainties
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τ > 10000 fm/cτ > 10000 fm/c

Heavy ion collisions

• Direct observation of QGP is impossible due to its short lifetime →rely on emerging particles as “probes”

41
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Soft probesτ > 10000 fm/cτ > 10000 fm/c

Heavy ion collisions

• Direct observation of QGP is impossible due to its short lifetime →rely on emerging particles as “probes”
• Soft probes: low -hadrons (light flavors) product from hadronization of strongly-interaction, thermalized QGPpT

• non-perturbative QCD regime → fingerprint of the QGP evolution

41
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Hard probes
Soft probesτ > 10000 fm/cτ > 10000 fm/c

Heavy ion collisions

• Direct observation of QGP is impossible due to its short lifetime →rely on emerging particles as “probes”
• Soft probes: low -hadrons (light flavors) product from hadronization of strongly-interaction, thermalized QGPpT

• non-perturbative QCD regime → fingerprint of the QGP evolution

• Hard probes: high-  partons (jets and heavy quarks) produced in the early stages in hard scatterings (high ) pT Q2

• calibrated probes, can be calculated by pQCD

• traverse the QGP and interact with its constituents, medium-modified parton cascade due to jet quenching

41


