

USTC-PNP-Nuclear Physics Mini Workshop Series

ALICE 实验进展综述

周代翠 华中师范大学

2024年9月29, 合肥, 中国科学技术大学

相对论重离子碰撞及其演化

• Characteristics: extremely high temperature O(1012 K), high energy density, vanishing baryon chemical potential

QGP probes

- Low-p_T particles:

 light flavour hadrons (u,d,s, + exotic states) produced from hadronization of the strongly-interacting, thermalized QGP constitutes
 non-perturbative QCD
 - regime
- thermodynamical and transport properties

• High-p_T partons (jets)

- Heavy flavors (charm and beauty quarks)
 - produced in early hard processes
 - interaction with QGP constituents
 - Perturbative QCD
- In-medium interaction (energy loss) and transport properties
- In-medium modification of the strong force and of fragmentation

Probing QGP with jets

Vacuum fragmentation (pp collisions)

Collimated sprays of hadrons resulting from fragmentation and subsequent hadronization of "high-energy" partons (quarks&gluons)

In-medium fragmentation (Pb-Pb collisions)

Quenching→parton lose energy through medium-induced gluon radiations and collisions with medium constituents

Nuclear modification factor: R_{AA}

Anisotropic flow

• Initial geometrical anisotropy ("almond" shape) in noncentral HI collisions \rightarrow eccentricity

• **Pressure gradients** develop \rightarrow more and faster particles along the reaction plane than out-of-plane

Scatterings among produced particles convert **anisotropy** in coordinate space into an observable momentum anisotropy \rightarrow **anisotropic flow**

 \rightarrow quantified by a Fourier expansion in azimuthal angle !

$$V_n = \text{harmonics}$$
$$E \frac{d^3 N}{dp^3} = \frac{1}{2\pi} \frac{d^2 N}{p_{\text{T}} dp_{\text{T}} dy} (1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)]),$$

Fig. 2. (color online) Characteristic shapes of the deformed initial state density profile, corresponding to anisotropies of \$\mathcal{E}_1\$, \$\mathcal{E}_2\$, \$\mathcal{E}_3\$, \$\mathcal{E}_4\$ and \$\mathcal{E}_5\$ (from left to right).

ALICE detector

hadrons, electrons, muons and photons to cope with very high multiplicities

Muon-Arm (-4<η<-2.5): Muon trigger, tracking, PID; Heavy-floavor hadrons and W/Z⁰

Detector: Length: 26 meters Height: 16 meters Weight: 10,000 tons

Central Barrel ($|\eta| < 0.9$)

field B = 0.5 T

- **ITS, TPC**: vertexing + 2π tracking and PID down to very low pT~0.1 GeV/c
- **EMCal/Dcal, PHOS:** high-*p*_T electron trigger, PID, photon, high pT pi0 and electrons

TOF, TRD, HMPID, etc.: Particle identification detectors Forward rapidity detector (**V0**, **T0**, **ZDC**, **SPD**): Trigger, centrality selection, event plane rec.

前向缪子径迹探测器(MFT),正在研制中的前向强子量能器(FOCAL)和内层探测器升级(ITS3)

Comprehensive study of Pb-Pb, p-Pb, pp as well as the collision of lighter ions: Xe (done), O (planned for 2024)

pp

p-Pb

Pb-Pb

 $\sqrt[(*)]{s_{\rm NN}} = 2.76, 5.02 \, TeV$

(*) collisions energy in Run 1 and 2

 \sim

ନ୍ସ(GeV/fm c)

Charged particle R_{AA}

ALICE, PLB 720 (2013) 52

1) At LHC(2.76TeV), the energy loss is stronger than that from RHIC (0.2TeV) → hotter/denser medium created at higher collision energy

2) pQCD predictions consistent at larger p_T region: > 10 GeV/c

 $T = 304 \pm 40 \, MeV$

 $\varepsilon = 12.3 \pm 1 \ GeV/fm^3$

CREME TO A NORMALITY

Charm particle R_{AA}

- Similar suppression in the most central collisions between mid- and forwardrapidity
 - → Charm quarks undergo strong energy loss in a wide rapidity range

- Less suppression observed in the R_{AA} of non-prompt D0 mesons than the prompt D0
- Stronger suppression observed in the R_{AA} of charged particles than the heavy quarks
- $\succ \Delta E \pi > \Delta E_c > \Delta E_b$

Charm quark energy loss: comparison with models

JHEP 2201 (2022) 174

- W/o coalescence: large deviation from data
 - → Hadronization via coalescence is important to interpret data
- W/o radiative energy loss: reasonably describe data in $p_T < 5$ GeV/*c*, but largely overestimate data at high p_T
 - → Radiative energy loss is dominant at high p_{T} , while collisional energy loss is predominant at low and intermediate p_{T}

J/ψ suppression & regeneration

P. Braun-Munzinger, J. Stachel., Nature 448, 302-309 (2007)

Regeneration of charmonium and charmed hadron production take place at the phase boundary or in QGP. Dissociation and regeneration take place in opposite directions vs energy density.

PLB 849 (2024) 138451; JHEP 02 (2024) 066

- ALICE data from 5.02 TeV Pb-Pb collisions confirm the J/ψ recombination picture:
 - R_{AA} increase with centrality
 - $\succ R_{AA}(LHC) > R_{AA}(RHIC)$
 - > R_{AA} midrapidity > R_{AA} forward rapidity,
- Evidence for the deconfinement and (re)generation
- 2.5.1 Study of the charmonium ground state: evidence for the (re)generation and demonstration of deconfinement at LHC energies

Medium response and recoil jet broadening

R = 0.4, 0 - 10%

ALICE: PRL 133, 022301 (2024) & PRC 110, 014906 (2024)

- First observation of recoil jet yield enhancement and medium-induced acoplanarity broadening at low- p_{T} with ALICE
- Medium response is favored

G-Y. Qin et. al, PRL103, 152303 (2009)

Elliptic flow

- Stronger elliptic collective flow observed in charged particle at the LHC energies
- Non-zerzo elliptic flow observed in prompt and nor-prompt D0 from bottom hadron decays and lower than that of prompt D0 for pT <~ 6 GeV/c
- Deviations from NCQ scaling at the level of \pm 20% indicated

Elliptic flow from large to small systems

Elliptic flow from two(multi)-particle correlations:

 $v_2\{2\}>0$

- subtract jets and other physical 2-particle correlations due to non-flow
- measure with rapidity gap

In AA collisions, collectivity originates from the presence of a strongly-interacting QGP

OPEN QUESTION: what is the origin of the emerging collectivity in pp, p-Pb collisions?

Elliptic flow from multi-particle correlations in all systems

- 初始几何
- 流体力学演化
- 夸克"聚并"强子化

小系统碰撞中的奇异增强

ALICE: Nature Phys. 13 (2017) 535-539

nature physics

LETTERS PUBLISHED ONLINE: 24 APRIL 2017 | DOI: 10.1038/NPHYS41

Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

首次在小系统pp和p-Pb碰撞中观测到奇异粒子产额随多重数增强的现象,并与核-核碰撞光滑链接;

- 没有碰撞能量依赖性; 高奇异数粒子增强更强
- 物理模型难于解释(粒子产生的微观机制)
- 奇异产额增强否是QGP物质生成的信号 (thermalization, equilibration?)
- 对碎裂函数的普适性和因子化的一种挑战 (string overlap, color reconnection? Hadron scattering)

Strange baryon-to-meson enhancement in p-Pb coll.

- Understanding hadronization & non-perturbative effects of the underlying event
- Baryon-to-meson enhancement observed in A+A: flowing medium + quark coalescence

PLB 827 (2022) 136984; JHEP 07 (2023) 136

- Ratio in jets does not show a maximum at intermediate p_T , ratio with UE selection is systematically higher than the inclusive in 2 < p_T < 5 GeV/*c*
- PYTHIA 8 hard QCD is consistent with ratio in jets but does not reproduce the inclusive ratio at low and intermediate $p_{\rm T}$
- No baryon-to-meson enhancement observed in jets , only soft contribution from bulk -> property of soft UE
- input to modelling (hadronization / coalescence)

radial flow

- 首次观测到Λ⁺_c/D⁰、Ξ^{0,+}_c/D⁰和Ω⁰_c/D⁰比值的显著增强现象(Σ^{0,++}对Λ⁺_c/D⁰比值增强贡献~40%)
- 强子化理论模型明显低估奇异粲重子 $\Xi_c^{0,+}/D^0$ 与 Ω_c^0/D^0 的增强效应
- 首次观测到粲夸克碎裂份额在强子碰撞与e⁺e⁻碰撞有明显差异,表现出粲夸克强子化修正

2024年9月29日

2024年9月29日

QCD死角效应的直接观测

ALICE 手征反常效应: 检验强相互作用下CP对称性、理解非微扰QCD新颖拓扑结构;

ALT-PREL-503580

方法分离手征磁波测量中的局域电荷守恒背景 提出采用事件形状选择 (ESE)

ALI-PREL-503585

首次提取出手征磁波信号强度

 $\Delta v_2 = v_2^- - v_2^+ \sim rA_{ch}$

with $A_{ch} = (N^+ - N^-) / (N^+ + N^-)$

质子-超子间强相互作用

- 如何从第一原理出发理解原子核中夸克含量不同的强子之间的 有效相互作用,在核物理中是一个挑战
- Proton-hyperon (p-Y) strong interaction poorly known
 - Traditional scattering measurements mostly limited to proton-proton
 - Relevant to neutron star modeling in the case of Λ and Σ
- ➤ Momentum-correlation of p-Y pairs produced by a source of well-measured size in pp and p-Pb → big jump in precision
- > Latest result: attractive strong interaction precisely measured for $p-\Xi^-$ and $p-\Omega^-$

2024年9月29日

Correlation peak at small momentum difference $k^* = |\mathbf{p}_a - \mathbf{p}_b|/2$ induced by interaction

LHC LS2	LHC RUN 3	LHC LS3	LHC RUN 4	LHC LS4	LHC RUN 5 and RUN 6
2019-2021	核物理系列研讨会(NPMWPS),合肥/中国科大/周代翠				27

ALICE in Run 3 (MFT and ITS2)

New Muon Forward Tracker

MFT CDS LINK

- Monolithic Active Pixel Sensor technology
- ➢ Spatial resolution: 5 µm
- ➢ Pixel size: 27 µm x 29 µm
- > Integration time: 5 μ s

Upgraded Inner Tracking System

- ➢ 3 layers in inner barrel (IB), 4 in outer barrel (OB)
- ➢ Get closer to IP: from 39 mm to 23 mm
- > Reduced material budget: from 1.14% X_0 to 0.36% X_0 per layer

Beam pip

 \blacktriangleright Reduced pixel size: from 50 x 425 μ m² to 29 x 27 μ m²

Performance of the ITS2 and MFT in Run 3

Improved pointing resolution at midrapidity

already now by factors of 2 and 6 in the transverse plane and beam-line direction, respectively **Secondary vertex reconstruction enabled at forward rapidity** separation of J/ψ contributions from beauty-hadron decays

ALICE in Run 3 (TPC)

Upgraded Time Projection Chamber -> GEM, continuous readout

TPC UPGRADE CDS LINK

- > pp data taking at 500 kHz
- ➢ Pb-Pb data taking at 50 kHz

Run 3 data taking

- Pb–Pb data taking at 50 kHz \triangleright
- Collected approx. 12 B minimum bias events \succ

- > pp data taking at 500 kHz
- \succ 75 pb⁻¹ minimum bias events are currently recorded

Dec

Nov

Charmonia in pp collisions at $\sqrt{s} = 13.6$ TeV

- \succ The new J/ ψ cross section is consistent with the Run 2 results
- > The data are described by ICEM and NRQCD based models coupled with FONLL to account for the non-prompt J/ψ contribution

$\psi(2S)$ in pp collisions at $\sqrt{s} = 13.6$ TeV

Zhang yuan, Zhenjun Xiong, Xiaozhi Bai

Run 3 Preliminary

- \triangleright Run 3 with the significantly increased statistics allow to reconstruct $\psi(2S)$ via dielectron decays
- > The CGC + NRQCD and ICEM can describe the data at low $p_{\rm T}$

Yiping Wang <u>24/09 09:00</u>

- First measurement of the production of $\sum_{c}^{0,++}(2520)$ relative to $\sum_{c}^{0,++}(2455)$ in pp collisions at $\sqrt{s} = 13.6$ TeV
- \succ No evidence of difference w.r.t. e⁺e⁻ collisions considering current uncertainties
- PYTHIA 8 Monash (default tune) overestimates the ratio, PYTHIA 8 with with additional color reconnection topologies underestimates the ratio

Probe the charm baron fragmentation function

 $\succ \Lambda_{C}$ probing the non-universality of charm baryon hadronisation

 \succ The precision of the new results from Run 3 improved significantly

Jochen Klein <u>25/09 12:10</u>

核物理系列研讨会(NPMWPS),合肥/中国科大/周代翠

ALICE

Run 3 Preliminary

Probing the charm splitting function

- > The momentum fraction of the first splitting in groomed charm jets converges to the charm splitting function(c->cg).
- > Run 3 allows us to make differential measurements in jet $p_{\rm T}$
- > In inclusive jets Zg has no dependence on jet $p_{\rm T}$, but in heavy-flavour jets mass effect decreases with increasing $p_{\rm T}$

Energy-energy correlators in jets in pp and p-Pb collisions

arXiv:2409.12687

New publication

EEC_{p-Pb} / EEC_{pp} $\Sigma_{\text{EEC}}(R_{\text{L}})$ **ALICE Preliminary** ALICE pp vs = 5.02 TeV Anti- $k_{\rm T}$ charged-particle jets, R = 0.4 Data p–Pb $\sqrt{s_{NN}}$ = 5.02 TeV $|\eta_{iet}| < 0.5, p_{T track} > 1 \text{ GeV/}c$ anti- k_{T} ch jets, $R = 0.4, 20 < p_{T}^{ch jet} < 40 \text{ GeV}/c$ o PYTHIA 8 Herwia 7 all pairs, $p_{\tau}^{trk} > 1.0 \text{ GeV}/c$ Sherpa AHADIC ALI-PUB-58088 $20 < p_{T}^{ch jet} < 40 \text{ GeV}/c$ $40 < p_{\tau}^{ch jet} < 60 \text{ GeV}/c$ $rac{d\sigma_{EEC}}{dR_L} = \sum_{i,j} \int d\sigmaig(R_L'ig) rac{p_{T,i} p_{T,j}}{p_{T,jet}'} \deltaig(R_L'-R_{L,ij}ig)$ HIA nPDF/pp ngantyr nPDF/pp Model / Data 0.8 CGC. sat. scale 2 CGC, sat. scale 6 $R_L = \sqrt{\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2}$ CGC, sat. scale 12 10⁻² 10^{-1} 10^{-2} 10-1 10^{-1} $R_{\rm l}$ R ALI-PUB-580901

A novel jet substructure observable describing the energy flow inside jets, can be calculated from first principles in QCD in the perturbative limit

Separation of the perturbative and non-perturbative regimes

> Modification of the energy-energy correlator (EEC) seen in p-Pb collisions, but not explained by purely initial-state effects

核物理系列研讨会(NPMWPS),合肥/中国科大/周代翠

Ananya Rai 24/09 12:10

Mass dependence of the energy-energy correlators

First heavy flavor energy-energy correlator measurement

Anjali Nambrath 24/09 09:00

Flavour effect is seen as a decrease in the EEC amplitude, peak position is not significantly shifted compared to inclusive jets

Open beauty production in Run 3

- > Non-prompt D^o fraction measured in Run 3: improved precision compared to Run 2 results and extended down to $p_T = 0$
- ► Non-prompt Λ_c^+ measured p_T down to 1 GeV/c
- > First direct observation of B^o meson in ALICE, measured down to $p_T = 2 \text{ GeV/c}$
 - Better constraint of the open beauty production

Andrea Tavira Garcia 23/09 14:40

ALI-PERF-578346

Isolated photon nuclear modification factor R_{AA}

*R*_{AA} consistent with unity within the uncertainties for both R= 0.2 and 0.4, no radiation from QGP at these *p*_T
 Peripheral collision in agreement with PYTHIA prediction including bias on centrality estimation

核物理系列研讨会(NPMWPS),合肥/中国科大/周代翠

AA ALICE New publication

arXiv:2409.12641

Charmonium Polarization

ALICE, PRL 131 (2023) 4, 042303

First measurement of quarkonium polarization w.r.t the event plane > Significant polarization ($\sim 3.9\sigma$) observed in semicentral collisions ► Polarization measurements are ongoing at midrapidity with Run 3 data

D*+ spin alignment in pp and Pb-Pb collision

- Spin density matrix $\rho_{00} > \frac{1}{3}$ for D^{*+} at high $p_T \Rightarrow$ quark fragmentation scenario
- > In pp collisions:
 - $\rho_{00} = \frac{1}{3}$ for prompt \mathbf{D}^{*+} , ρ_{00} larger than $\frac{1}{3}$ for non-prompt \mathbf{D}^{*+} , due to the helicity conservation in weak decays
 - New measurement in pp collisions provides an important baseline for Pb-Pb collisions

Charmonium elliptic flow in Run 3

The new result is consistent with Run 2, with statistical precision improved at low p_T at forward rapidity A significant J/ ψv_2 is observed at forward rapidity, consistent with the charm quark thermalization

Searching for the quasi-particle in QGP

First measurement of the hardest relative transverse jet splitting

Need well-controlled models baseline from theory to investigate Moliere effects to search quasi-particle in QGP
 Provide new constrain on the microscopic structure and dynamics of the quark–gluon plasma

ICE

Quenching with correlated jet substructure

- > Multidimensional measurement to disentangle jet survival bias from medium modifications
- Allow disentangling modifications to the substructure of jets from energy loss effects arising from migration of the jet momentum

Dielectron production in Pb–Pb collisions

arXiv:2308.16704

 \triangleright Dielectron yield is consistent with hadronic cocktail within uncertainty, the excess in the low-mass region is 1.3 σ

> More statistics and better control of HF background are needed to quantify the excess: full statistics from Run 3

➢ More statistics and better-pointing resolution thanks to MFT and ITS upgraded in Run 3

> Improved DCA enable the separation of prompt (e.g. thermal) and non-prompt (HF background)

ALICE

LHC-ALICE中长期计划

- 夸克物质性质硬探针的精确测量
- 夸克物质强相互作用动力学
- 手征磁、手征涡旋及手征反常研究
- 冷核效应及末态强子化行为
- 奇特物质结构及新粒子寻找

光子谱仪 (PHOS) 及前端电子学研制

合作研制ALICE光子谱仪前端电子学系统(1999-2015年)

- ●低噪声、大动态范围的电磁量能器读出
- 用以测量直接光子和衰变光子

核物理系列研讨会(NPMWPS),合肥/中国科大/周代翠

49

ALICE

双喷注电磁量能器 (DCAL) 及其读出电子学

合作研制ALICE取样电磁量能器及其读出系统(2009-2015年)

- ●中方建造了一个超级模块及读出系统,掌握了Shashlik取样量能器研制技术
- ●测量双喷注、光子-喷注

50

硅像素寻迹探测器ITS2芯片设计及硅像素模块研制

- ●基于0.18 µm工艺单片有源硅像素传感 器技术
- 用于顶点及带电粒子的高精度测量 (空间分辨率提高10倍以上,读出速率提高50倍以上)
 参与硅像素芯片设计;完成了升级探测器1/5芯片模块的建造与安装调试

ITS upgrade HIC assembly at CCNU/Wuhan 核物理系列研讨会(NPMWPS),合肥/中国科大/周代翠

硬件贡献四:前向缪子径迹探测器-MFT电子学母版研制

- 参与探测器研发及物理分析可行性研究
 完成了探测器核心电子学母板设计与建造
- 用于高精度测量重夸克衰变顶点

2024年9月29日

正在参与的ALICE 探测器升级(2029-2032 运行)

第三代ALICE 探测器 (2036-2041运行)

high-resolution, wide η coverage, high rates for precision QGP physics
 Heavy-ion physics to the fb⁻¹ luminosity era* with unique kinematic reach

<u>科学问题</u>

- ●如何从QCD第一性原理 出发理解夸克物质性质?
- 能否证明核环境中手征 对称性的恢复?
- 核环境中是否存在量子场论 基本特性的破坏,以及超出 标准模型的新物理现象?

中国组正在参与全新的ALICE第三代探测器研发和物理分 析可行性研究,将重点参与硅像素探测器和基于LGAD 的 TOF探测器研发和建造

Run number: 520143 First TF orbit: 692888 Date: Tue Jul 5 16:53:05 2022 Detectors: ITS,TPC,TRD,TOF,PHS,EMC,MFT,MCH,MID

感谢各位专家的莅临指导!

ALICE heavy quark programme

Collisions systems (so far) : Pb-Pb, pp, p-Pb, Pb-p, Xe-Xe

Hadronic decays (|y| < 0.8) $D^0 \rightarrow K^-\pi^+$ $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$ $D_s^+ \rightarrow \phi \pi^+ \rightarrow K^- K^+ \pi^+$ $\Lambda_c^+ \rightarrow p K^- \pi^+$ $\Sigma_c^{0,++} \rightarrow \Lambda_c^+ \pi^{\mp}$ $\Xi_c^{0(+)} \rightarrow \Xi^- \pi^+ (\pi^+)$ $\Omega_{c}^{+} \rightarrow \Omega^{0} \pi^{+}$

Semi-leptonic decays • c, b \rightarrow e[±] (|y| < 0.7) • c, b \rightarrow µ[±] (2.5 < y < 4) ALICE

中国组在ALICE探测器上已做出的贡献

内层径迹探测器(ITS2)

前向缪子径迹器 (MFT)

Bjorken's Estimate of the Energy Density

How many particles are created in a collision?

In a central Pb-Pb collision at the LHC, more than 20000 charged tracks must be reconstructed.

→ High granularity tracking systems, primary importance of tracking, vertexing calibration

Charged particle density in central AA collisions

Particle production per participant in AA collisions follows a steeper power law than in pp, pA and increased by **2-3x** from RHIC to the LHC

AA collisions are more efficient in transferring energy from beam- to mid- rapidity than pp

ALICE: Pb–Pb at 5.02 TeV — highest energy so far

→ For 0–5% most central collisions, confirms trend from lower energies

Temperature of the QGP

Low- p_T : 2.6 σ excess w. r. t. models in 0–20% central — thermal contribution

- $T_{\text{eff}} = 304 \pm 12(\text{stat.}) \pm 41$ (syst.) MeV in central collisions above $T_c \sim 170 \text{ MeV}$
- 30% higher than at RHIC (Au–Au at $\sqrt{s_{NN}}$ =200 GeV) ALICE Phys. Lett. B754 (2016) 235 核物理系列研讨会(NPMWPS),合肥/中国科大/周代翠 62

Upgrading the ALICE detector (RUN 4)

- Replacing the ITS2 inner layers by "silicon-only"
- Inner-most radius 19 mm, x 2 improvement in pointing resolution
- Improve the measurements of heavy flavor and dielectrons at midrapidity

FoCal: TDR approved

- FoCal-E calorimeter: High-granularity Si-W
- ➢ FoCal-H: Cu-scintillator
- > Direct photons, π^0 , jets at forward rapidity
- > Unexplored regions of small-x and low Q² gluons

LHC LS2	LHC RUN 3	LHC LS3	LHC RUN 4	LHC LS4	LHC RUN 5 and RUN 6
2019-2021					
	核物	物理系列研讨会(NPMWP	4	63	

Upgrading the ALICE detector (RUN 4)

RUN

ITS3: Prototype

FoCal-E Pixels FoCal-H **FoCal-E Pads** 18 layers Si pad sensors wafers of 9 x 8 cm² pad size 1 cm² readout with HGCROC v2 **FoCal-E Pixels** 2 ALPIDE pixel layers Monolithic Active Pixel Sensors pixel size of ~30 x 30 µm² FoCal-E Pads · two tested prototypes (HIC,pCT) FoCal-H 9 Cu-scintillating fiber modules towers size ~ 6.5 x 6.5 cm² length ~110 cm readout with CAEN DT5202

FoCal: Prototype

Prototypes constructed to test assembly methods and verify performance

Bong-Hwi Lim <u>24/09 15:55</u>			Jacek Tomasz Otwinowski 24/09 16:15		
LHC LS2	LHC RUN 3	LHC LS3	LHC RUN 4	LHC LS4	LHC RUN 5 and 6
2019-2021	核性	加理系列研讨会(NPMWP	S)。合肥/中国科大/周代器		64
2010 2021	1次1	物理家列听时云(NIMWIS),首加/中国科人/同代卒			

Upgrading the detector (ALICE 3)

Detector concept:

- Compact **all-silicon tracker** with high-resolution vertex detector
- **Particle Identification** over large acceptance, identification of muons, electrons, hadrons, photons
- Fast read-out and online processing

Physics programs:

- High-precision **beauty** measurements
- Multi-charm baryons, exotic hadrons, ultra-soft photons
- Time-dependence and flow of thermal radiation
- $D-\overline{D}$ and $D-D^* \Delta \phi$ correlations

Cas Van Veen 24/09 15:35

		LHC LS3	LHC RUN 4	LHC LS4	LHC RUN 5 and RUN
					6
2019-2021					
	核	物理系列研讨会(NPMWP	Į	65	

 \sim

ନ୍ସ(GeV/fm c)

Charm quark transport

Indicate charm may thermalize in the medium

Gluon emission of a heavy quark

揭示质子-超子间强相互作用

