

Measurement of $e^+e^- \rightarrow K^+K^-$ Cross Section via an untagged ISR Photon

Hua Shi¹, Yijing Wang¹, Huiliang Xia¹, Tiantian Lei¹, Dong Liu¹, Weiping Wang^{2,1}, Dexu Lin³ and Guangshun Huang¹ ¹University of Science and Technology of China ²Johannes Gutenberg University Mainz ³Institute of Modern Physics, CAS Group Meeting Sep. 11th, 2024

Resolution

▶ Resolution of $M(K^+K^-)$:

Hua Shi

Cross section measurement of $e^+e^- \rightarrow K^+K^-$ via ISR

Signal MC

•
$$\phi$$
 width: $\Gamma_{\phi}(s) = \Gamma_{\phi} \Big[\mathcal{B}(\phi \to K^{+}K^{-}) \frac{\Gamma_{\phi \to K^{+}K^{-}}(s, m_{\phi}, \Gamma_{\phi})}{\Gamma_{\phi \to K^{+}K^{-}}(m_{\phi}^{2}, m_{\phi}, \Gamma_{\phi})} + \mathcal{B}(\phi \to K^{0}\bar{K}^{0}) \frac{\Gamma_{\phi \to K^{0}\bar{K}^{0}}(s, m_{\phi}, \Gamma_{\phi})}{\Gamma_{\phi \to K^{0}\bar{K}^{0}}(m_{\phi}^{2}, m_{\phi}, \Gamma_{\phi})} + 1 - \mathcal{B}(\phi \to K^{+}K^{-}) - \mathcal{B}(\phi \to K^{0}\bar{K}^{0}) \Big]$

•
$$\rho$$
 width: $\Gamma_{\rho}(s) = \Gamma_{\rho} \frac{s}{m_{\rho}^2} \left(\frac{\beta(s,m_{\pi})}{\beta(m_{\rho}^2,m_{\pi})} \right)^3 \qquad \beta(s,m) = \sqrt{1 - 4m^2/s}.$

• BW:
$$BW(s,m,\Gamma) = \frac{m^2}{m^2 - s - i\sqrt{s}\Gamma(s)}$$

Resonance	mass	width	coefficient
φ	1.019	0.004	0.999
	1.680	0.150	0.069
	2.265	0.100	-0.068
ω	0.783	0.008	2.986
	1.420	0.200	-0.240
	1.670	0.315	-2.250
	2.412	1.097	0.504
ρ	0.775	0.149	0.547
	1.465	0.400	0.105
	1.720	0.250	0.289
	2.005	0.206	0.059

Cross Section

- According to $M(K^+K^-)$ resolution and $M(K^+K^-)$ distribution of data from 1.22 GeV to 3.2 GeV:
 - From 1.22 to 1.27 GeV, interval size is 50 MeV
 - From 1.27 to 2.49 GeV, interval size is 20 MeV
 - From 2.49 to 3.19 GeV, interval size is 50MeV
- The comparison between MC and MC truth:

Hua Shi

Cross section measurement of $e^+e^- \rightarrow K^+K^-$ via ISR

Advice to unfolders:

- Three things contribute to the solution: the response matrix, data statistics, and binning.
- Choose binning wisely: large variations in data may be avoided by using variable bin widths. Size
 of bin-to-bin error correlations may also be affected.
- Rescaling is important: only unfold the equations once they have equal "weights".
- The Monte Carlo sample(s) used for building the response matrix should have as high statistics, and should be as close to the real experiment, as possible.
- Monte Carlo samples used for testing should have the same statistics as the real data; use of larger or smaller samples can be misleading.
- To assess unfolding systematics, vary the matrix within its tolerances, and study the effects on the singular values.
- Even if you are using a different algorithm for unfolding your data, try applying SVD: it will help identify the bottlenecks, and assess any benefits of performing unfolding in the first place.
- It's wise not to expect any miraculous solutions to unfolding problems.
- The bin width in unfolding (the statistics in each bin and physical requirements):
 - From 1.22 to 1.27 GeV, interval size is 50 MeV
 - From 1.27 to 2.40 GeV, interval size is 10 MeV
 - From 2.40 to 3.20 GeV, interval size is 20MeV

Try: Kreg = 30; Kreg = 7. Learning and comparison part: 176024

After: $\chi^2 = 56.3278$ Before: $\chi^2 = 64.5769$ After: $\chi^2 = 26.9952$ Before: $\chi^2 = 31.7286$

Hua Shi

Cross section measurement of $e^+e^- \rightarrow K^+K^-$ via ISR

- The bin width in unfolding (the statistics in each bin and physical requirements):
 - From 1.22 to 1.27 GeV, interval size is 50 MeV
 - From 1.27 to 2.40 GeV, interval size is 5 MeV
 - From 2.40 to 3.20 GeV, interval size is 10MeV

After: $\chi^2 = 64.4294$ Before: $\chi^2 = 68.8679$ After: $\chi^2 = 24.8312$ Before: $\chi^2 = 33.9323$

Hua Shi

Cross section measurement of $e^+e^- \rightarrow K^+K^-$ via ISR