Introduction of Helix Corrections

Yijing Wang

University of Science and technology of China

September 11, 2024

Motivation

• Obvious difference between MC and data on the distribution of χ^2_{4c} and pulls are observed in most analysis.

• The traditional method: using control samples to estimate the systematic error of this difference.

• **Disadvantages: Firstly** for most channels, it is hard to find appropriate reference channel with the final states and momentum distribution similar to the analysis process. **Furthermore**, it is difficult to select pure control sample without using kinematic constraints or selection criteria correlated with kinematic constraints such as total energy, total momentum and so on.

• **Method:** Correct the track helix parameters to reduce the difference between MC and data.

• The control samples used for μ and K corrections are: $e^+e^- \rightarrow j/\psi \pi^+\pi^- \rightarrow \mu^+\mu^-\pi^+\pi^-$ and $e^+e^- \rightarrow K^*K^{\pm}\pi^{\mp} \rightarrow K^+K^-\pi^+\pi^-$

イロト 不得 トイヨト イヨト 二日

Selection of $e^+e^- \rightarrow j/\psi \pi^+\pi^- \rightarrow \mu^+\mu^-\pi^+\pi^-$

Event selection

 Charged Track
 d_{xy} < 1.0 cm, d_z < 10.0 cm, cosθ < 0.93;
 nGood == 4, nCharged == 0;

• Lepton and pion idetify P > 1.0 GeV : lepton P < 1.0 GeV : π npion+ = npion-, nlepton+ = nlepton- E/P > 0.7 : e E < 0.45 GeV : μ

• Kinematic fit : $\chi^2_{4C} < 60$

• J/ψ mass window cut $|M(J/\psi) - 3.097| < 0.02$

• open angle cut $\cos\theta \ (\pi^+\pi^-) < 0.98$ $\cos\theta \ (l^+\pi^-) < 0.98$ $\cos\theta \ (l^-\pi^+) < 0.98$

イロト イヨト イヨト ・

Selection of $e^+e^- \rightarrow K^*K^{\pm}\pi^{\mp} \rightarrow K^+K^-\pi^+\pi^-$

Good charged tracks:

• $|V_z| < 10$ cm, $V_r < 1$ cm and |cos heta| < 0.93

•
$$N_{Good} = 4$$
, $\sum Q_{track} = 0$

PID:

 For K : *Prob_K* > *Prob_π*&&*Prob_K* > *Prob_p*&&*Prob_K* > 0.001, *N_{K⁺}* = *N_{K⁻}* = 1

 For π :

 $Prob_{\pi} > Prob_{K}\&\&Prob_{\pi} > Prob_{\rho}\&\&Prob_{\pi} > 0.001, N_{\pi^{+}} = N_{\pi^{-}} = 1$

Vertex Fit:

• Successful vertex fit for the two charge tracks

Kinematic Fit:

- Successful 4c kinematic fit, χ^2_{4c} <60
- One of $M_{K^{\pm}\pi^{\mp}}$ should in the K^* window:[0.8,1] GeV/ c^2 .

The pull distribution

- One charge track of BESIII can be described by 5 parameters.
- The pull distribution is defined as: $pull_i = \frac{\alpha_i \alpha_{0i}}{\sqrt{|(V_{a0})_{ii} (V_{a})_{ii}|}}$ α_i : the *i*th track parameter. V: the covariance matrix.
 - Theoretically, the distribution of pull is a standard Normal distribution.

The pull distribution

Yijing Wang (USTC)

э

Correction of the track parameters of MC simulation

• Actually the pull distribution obeys a Normal distribution with mean μ_i and standard deviation σ_i .

• To reduce the difference between data and MC: enlarge the resolution of α_{0i} by smearing it with a Gaussian, and the mean and sigma of the smeared Gaussian is:

$$lpha_{0i} + (\mu_i^{data} - \mu_i^{MC}) * (V_{a0})_{ii}$$
 and $\sqrt{((\sigma_i^{data}/\sigma_i^{MC})^2 - 1) * (V_{a0})_{ii}}$

	ϕ_0		ĸ		tgλ	
	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$
π^+	-0.007	1.087	0.362	1.178	0.168	1.178
π^{-}	-0.060	1.162	-0.361	1.131	0.211	1.253
μ^+	-0.045	1.277	0.499	1.103	0.184	1.129
μ^{-}	0.031	1.269	-0.464	1.057	0.233	1.138
	ϕ_0		κ		$tg\lambda$	
	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$
π^+	-0.02 ± 0.03	$1.15{\pm}0.02$	$0.42{\pm}0.03$	$1.14{\pm}0.02$	0.07 ± 0.03	$1.09 {\pm} 0.02$
π^{-}	-0.01 ± 0.03	$1.16{\pm}0.02$	-0.36 ± 0.03	$1.13{\pm}0.02$	0.08 ± 0.03	$1.09 {\pm} 0.02$
K^+	-0.08 ± 0.03	$1.17{\pm}0.02$	$0.37 {\pm} 0.03$	$1.12{\pm}0.02$	$0.06 {\pm} 0.03$	$1.07 {\pm} 0.02$
K^-	0.06±0.03	$1.16{\pm}0.02$	-0.43 ± 0.03	$1.11{\pm}0.02$	0.07 ± 0.03	$1.09 {\pm} 0.02$

χ^2_{4c} distributions after distribution

efficiency after corrections of $\mu^+\mu^-$

• The situation of kinematic fit efficiency still exists.