

Matthias Schott Bread and Butter Physics

City of Bonn

- Founded by the Romans 11 B.C. next to the Rhine River
- **Middle ages: important religious** centre
- Conquered by Napoleon in 1794
	- **E** Afterwards part of Prussia
- Most famous citizen
	- **Ludwig van Beethoven (1770*)**
- Capital of Germany from 1949 to 1991

University of Bonn

1818: Foundation of the University

- **by King Friedrich Wilhelm III.**
- as partner university to Berlin

Some Figures

- 33.000 students
- 6.000 PhD students
- >600 professors in nearly all subjects

Most successful excellence university within Germany

- 5 Nobel-Prizes
- 3 Field-medal winners
- ... and our own accelerator

My Research Group in Bonn

What could we talk about today?

Searching for New $\left\{\n\begin{array}{ccc}\n\text{Searchitz for Axions}\n\end{array}\n\right\}$

W-Boson Properties

Light-by-Light Scattering

Strong Coupling Constant

 $(q-2)$ of the tau

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz) 5

Axions at the LHC

Light Through Wall

Helioscope

Cavity-based Searches

Matthias Schott Search for Axion-Like **Particles**

Or why we did not find axion-like particles at the LHC, but might discover gravitational waves instead

Prof. Dr. Matthias Schott

Why Axions?

Neutron Electric Dipole Moment

- **u** violates P and T symmetry
- If CPT conserved, it violates CP
- Axions from Strong CP problem
	- Expected nEDM: \sim 10⁻¹⁸ e cm.
	- Exp. bound is a trillion times smaller

Peccei-Quinn solution

- global anomalous $U(1)_{PQ}$ symmetry
- spontaneously broken
- Axion is pseudo-Nambu-Goldstone boson
- **Predicted relation between mass** and coupling

Why Axions?

Neutron Electric Dipole Moment

- **u** violates P and T symmetry
- If CPT conserved, it violates CP
- Axions from Strong CP problem
	- Expected nEDM: \sim 10⁻¹⁸ e cm.
	- Exp. bound is a trillion times smaller

Peccei-Quinn solution

- global anomalous $U(1)_{PQ}$ symmetry
- spontaneously broken
- Axion is pseudo-Nambu-Goldstone boson
- **Predicted relation between mass** and coupling

Why Axions?

Neutron Electric Dipole Moment

- **u** violates P and T symmetry
- If CPT conserved, it violates CP
- Axions from Strong CP problem
	- Expected nEDM: \sim 10⁻¹⁸ e cm.
	- Exp. bound is a trillion times smaller

Peccei-Quinn solution

- global anomalous $U(1)_{PQ}$ symmetry
- spontaneously broken
- Axion is pseudo-Nambu-Goldstone boson
- **Predicted relation between mass** and coupling

Why Axion-Like Particles?

- "No" new physics model that does not have a gold-stone boson
	- e.g. pion in QCD
	- **I** More general class of axion-like particles (ALPs)
		- **E** coupling&mass are independent
- Many decay modes possible
	- **This talk only covers photon** decay modes
	- **QCD Axion has two-photon** vertex (Due to mixing with π^0)
- **For large enough PQ symmetry** breaking scale, the axion may be the main constituent of DM

Overview of Searches for ALPS

E Light Through Wall (LWS) Type **Experiments**

- Model-independence: yes
- Couplings: yes
- Mass: no / maybe
- QCD-Axion: no

- **E** Helioscopes: Look at the sun
	- Model-independence: a bit
	- Couplings: no
	- Mass: no / maybe
	- **QCD-Axion: yes**

Overview of Searches for ALPS

Dark Matter Searches

- Model-independence: no
- Couplings: no
- **Nass:** yes
- QCD-Axion: yes

- **Collider Based Searches**
	- Model-independence: depends
	- Couplings: depends
	- Mass: yes
	- QCD-Axion: no

Be Careful when looking at Exclusion Plots!

- Note: Not all future experiments are shown!
- Only few experiments can probe only some very small regions of the QCD-Axion
	- … and those are strongly model dependent.
	- … people only zoom into the regions where they are sensitive!
	- \blacksquare ... it is a logarithmic plot!

Axions at Colliders

- Many searches for light scalars ongoing, but most of them not really well motivated
- Higgs Portal could connect high energy physics with low energy phenomena
	- M. Bauer, M. Neubert, A. Thamm, Collider Probes of Axion-Like Particles
	- arXiv: 1708.00443v2
- Axion models that could explain the muonic (g-2) anomaly

EX Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders

E Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders

- \blacksquare 5 GeV < m_A < 1 TeV:
	- **E** Light-by-light scattering

Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders

 \blacksquare 5 GeV < m_A < 1 TeV: Light-by-light in p-p 10^{-2} **E** Light-by-light scattering 10^{-3} ■ 50 MeV < m_A < 62 GeV: $g_{\rm avy}/\text{GeV}^{-1}$ Light-by-light **Anomalous Higgs boson** 10^{-4} In Pb-Pb decays into four photons 10^{-5} 10^{-6} H->aa 10^{-7} ₁₀ $10⁸$ $10⁹$ 10^{10} 10^{11} 10^{12} mass / eV

Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders

- \blacksquare 5 GeV < m_A < 1 TeV:
	- Light-by-light scattering
- 50 MeV < m_A < 62 GeV:
	- **Anomalous Higgs boson** decays into four photons
- 10 MeV $<$ m_A $<$ 400 MeV
	- Search for ALPs at the FASER experiment

Light by Light **Scattering**

Typical Di-Photon Events in ATLAS and CMS

Electromagnetic interactions in p+p and Pb+Pb collisions

- **Typical Heavy Ion Collisions are a** huge mess
- **Ion and proton beams with** relativistic energies generate large EM-fields
- photon-induced reactions
	- Pb ions/protons escape into the beam pipe without remnants in the ATI AS detector
- in "ultra-peripheral collisions": impact parameter is large
	- \rightarrow suppress strong interactions

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz) 22

[Fermi, Nuovo Cim. 2 (1925) 143] [Weizsacker, Z. Phys. 88 (1934) 612] [Williams, Phys. Rev. 45 (10 1934) 729]

Search for Light-by-Light Scattering

- Light-by-light scattering in ultraperipheral Pb+Pb collisions
	- arxiv:1702.01625
	- arxiv: 2008.05355
- Idea based of this measurement based on [D. d'Enterria et al. PRL 111 (2013) 080405]
	- Follow up in [A. Szczurek et al. PRC 93 (2016) 4, 044907]
- What do we expect in the detector?
	- Two photons and nothing else in the detector
		- $E_T > 3$ GeV and $|\eta| < 2.37$
		- $m_{\chi\chi} > 6$ GeV, $p_{\chi\chi\chi} < 2$ GeV
	- The Pb-ions would be scattered under a very small angle

- Veto event if it has charged tracks with hit in pixel
- Back-to-back photons
	- Acoplanarity = $1 \Delta\phi / \pi < 0.01$ (reduces CEP background)

Light-by-Light Scattering Candidate

Run: 287931 Event: 461251458 2015-12-13 09:51:07 CEST

Observation of Lightby-Light Scattering

- 97 selected candidate events
	- a signal expectation of 45
	- a background expectation of 27 events
- x-sec measured in fiducial region
	- $\sigma_{\text{fid}} = 120 \pm 17 \text{(stat.)} \pm 13 \text{(syst.)} \pm 4 \text{(lumi.)}$
	- $\sigma_{\text{SM}} = 80 \pm 8 \text{ nb}$
- Light-by-light scattering results at the LHC can be reinter-pretated in upper bounds for axion-models

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz) 25

Higgs To Axion Decays

Higgs Boson Decays into Axions

- Convention: Axions couple to Higgs
	- Inhibits a certain model dependence
- State-of-the-art photon identification does not work for
	- **Highly collimated photons**
	- Axions decay close to the calorimeter

- Strategy:
	- High mass range (5-60 GeV)
		- **Look for 3-4 Photon events**
	- Low mass range (100 MeV 5 GeV)
		- Try to separate close-by photons with neural network based classifiers

Some words on model-dependence

- Most axion models inhibit a certain model dependence
	- Exception: Axion-photon production
- Which axions could explain $(g-2)\mu$
	- Requires coupling muons
		- **•** Problem: wrong sign!
	- **B** Solution: also coupling to photons
		- **■** Wilson coefficient C_{vy} needs to sufficiently large
- How about the assumption that axions couple to Higgs?
	- Trivially realized by loops: almost in every axion model the case
	- **Sensitivity depends in the Wilson** coefficient C_{ab} , that describes the axion-Higgs coupling.
	- $\frac{1}{2}$ used $\frac{C_{ab}}{A}$ $\frac{1}{A^2}$ = 0.01 TeV−2

Identify Merged Photons

NN based classifier using shower-shapes of the electromagnetic calorimeter

Training data

- Single Photons from Data and MC
- Merged Photons only from MC
- Systematics by varying shower shapes and $Z\rightarrow ee\gamma$ events

How about displaced photon signatures?

- Problem: how do we know the ATLAS detector response for displaced photons?
- Idea: Compare shower-shape variables of identified K-long decays
- Treat difference as systematic

High Mass Region (5-62 GeV)

Prompt decays (large g_{ayy} couplings): 4 standard "tight" photons

Super small background

- Long-lived axions (smaller g_{ayy} coupling): >1 standard "tight" photon, 3 loose/ displaced photons
	- Background estimated using simple sideband approach

Medium Mass Region (1-5 GeV)

- Photons from axion decays start to appear merged
	- Simultaneously study two regions
	- 1 single photon $+1$ merged photon
	- 2 merged photons
- Background estimation again with a simple sideband approach

- Most stringent limits and first limits on ALP models with large lifetimes!
- Why didnt we find axions here? Well, because they are simply not there...
	- ... but there is a small parameter region left unprobed

Low Mass Region (0.1-1 GeV) - I hereby apply for dinner!

- My summer 2023 at SUNY: Select $H \rightarrow \gamma \gamma$ events (2 Single) and reinterpret the those for very low axion masses
	- Highly collinear axions will pass the standard single photon selection
	- Based only on public results only, but I hope to bring this through ATLAS :)

We need to leave ATLAS for the Rest…

Future Axion Searches and finally Gravitational Waves

The FASER Experiment

- LHC was designed to search (and study) for heavy strongly coupled particles
	- Existing experiments well suited for this, and performing well
- Huge number of light SM hadrons in the LHC collisions are produced in the forward direction
	- Weakly coupled, light new particles (dark sector)
	- Weak coupling means very rarely produced, and long-lived
	- Neutrinos produced in hadron decay
	- Weak coupling means rarely interacting

Prof. Dr. M. Schott (Rheinische Friedrich-Wilhelms-Universität Bonn) 37

The FASER Detector System

\blacksquare FASFR is situated ~500m from the ATLAS collision point $(n > 9.2)$

- on the beam collision axis
- 0.6T permanent dipole magnets
- 1.5m long decay volume
- 2.5m long tracker (96 ATLAS SCTs)
- Scintillators for veto, trigger, and preshower (particle ID)
- 4 LHCb calorimeter modules
- **Tungsten-emulsion FASERv detector** for additional neutrino sensitivity

Search for Axion Like Particles: Signal and Selection

Currently sensitive to axion-like particles (ALPs) coupling to $SU(2)_L$ gauge bosons

- Mainly produced in B meson decays in our sensitivity range
- Signature: as a $\rightarrow \gamma \gamma$ appearing from 'nothing' with \sim TeV of energy
- Can decay anywhere in FASER

Prof. Dr. M. Schott (Rheinische Friedrich-Wilhelms-Universität Bonn) 39

Search for Axion Like Particles: Signal and Selection

Selection

- Nothing in all 5 veto counters
- Evidence of EM shower in preshower
- > 1.5 TeV in calorimeter
- In time with LHC collision

Background

- **E** Neutrino interactions
- **E** Neutral hadrons
- Large-angle muons
- Non-collision / cosmics

■ Data control regions and simulation used in blinded analysis to evaluate backgrounds

Search for Axion Like Particles: Signal Region and Limits

- New Results for Moriond 2024
- Observed 1 event in 58 fb-1 after unblinding
- Expecting 0.4 ± 0.4 from CC ν interactions in pre-shower
- **Probing new parameter** space of this ALPs Model
- **Eurther Information:**
	- https://faser.web.cern.ch/physics/ publications

Prof. Dr. M. Schott (Rheinische Friedrich-Wilhelms-Universität Bonn) 41

Future Axion Searches and finally Gravitational Waves

Recap of Searches with Cavities: ADMX, Haystack

- Galactic halo axion (or ALP DM)
	- photon conversion in cavity within a Bfield if resonant
	- Galactic halo axions have speeds β=10-3: 1.2 kHz spread in frequency
- **Experimental Challenges**
	- Signal Power: P=10-24W
	- **Only few kHz band-width can be** observed at one time
	- Scanning required (tunable Cavity)

- Use new 14T Magnet with a bore diameter of 100 mm
- Idea: To reduce noise, use a superconducting cavity
	- First time for an axion search experiment
	- Signal Power 10-24W,
	- Q-Factor 10⁶

- Study only one frequency: 8-10 GHz 30 μ eV to 40 μ eV
	- Advantage: We do not need to tune the cavity and keep the Q-Factor high
	- **Disadvantage: we need to be extremely** lucky that we search at the right axion mass

SUPAX: First Results and expected Sensitivity

- Dark Photons can convert within the SUPAX Cavity without B-field
	- First run sets limits on mixing parameter $X < 9.88 \cdot 10^{-14}$ for m_A=34.34 μeV
- Expect first data-taking with magnet in the coming months
	- Close to QCD Axion band when scanning one frequency
	- Developments for tunable cavity are ongoing
- ... does this experiment makes sense?
	- Yes, because it is interesting R&D for superconducting cavities
	- ... and clearly for HFGW

Gravitational Wave Landscape

‣ (HFGW) **sources**

- ‣ could explain dark matter
- ‣ could access the early universe
- ‣ Very mild limits for ‣ *f* =1 MHz - 10 GHz

GravNet

A first dedicated effort probing high-frequency gravitational waves https://www.pi.uni-bonn.de/gravnet/

How to detect high frequency gravitational waves?

‣ Gravitational waves convert to photons in presence of magnetic fields

If photon matches **resonance** frequency of cavity, signal is enhanced and **detectable**

How does a network of detectors help?

Input data of one cavity

- **FFT** of data in time-intervals
- **EXECTE Signal power per time-interval as time-series**
- **EXECT:** Future: Use directly recorded voltage as input
- Combine data of all cavities/experiments using an attention NN

GravNet - If you have a magnet on site, we are happy to provide you with a GW detector

How to get even more sensitive?

Signal Power of the axion in the cavity is given by

$$
P_{\text{sig}} = \left(\frac{g_{\gamma}\alpha_{em}}{\pi}\right)^{2} \frac{(\hbar c)^{3} \rho_{a}}{\Lambda^{4}} \frac{B^{2} \beta}{(1+\beta)^{2}} Q_{0} V C_{010} \frac{2 \pi f_{0}}{\mu_{0}}
$$

- Large volume and high magnetic fields drive the sensitivity
- Where can we find large volumes with high magnetic fields? CMS!
- Problem: I guess CMS doesn't want to give up its LHC physics program
	- e-Print: 2209.12024 (in case you want to know what one could get)
	- … Let's see what the future brings

Funded by the European Union

European Research Council Established by the European Commission

Summary

ALPs are certainly a hot topic

- **Gravitational Waves might be even hotter**
- **EXEC** Lets combine efforts! GravNet is open to new members

Some personal statements

- **EXEC** Search for vaguely motivated new particles seems to me a waste of time during HLLHC
	- **EXEC SEARCHES WIll (have to) move to** search for long-lived particles
- **IMHO: The future lies in precision physics!**
	- **E** Lepton collider

/4 41 m

H

Thanks to the ERC, which allowed this research

Light Through Wall

EOM in QCD

Characteristic scale of GCD W lvou gel \mathfrak{f} if shong Λ_{QCD} ~ 200 HeV $(m_{\overline{n}})$ $L_1 \wedge_{QCD}^{\rightarrow} \sim 10^{-15}$ m α vark Charge $q = 1/3$ $L_j - \left| d_u \right| \sim 10^{-15} m \cdot \frac{1}{3} \cdot \frac{\Theta}{\hat{L}_{\text{SM4}} h^{n}}$ more defailed $1 du 1 \sim 1... 10 \cdot 10^{-16}$ Ocem

$$
a_{ff}c_{w}e: qLcc_{ff} \Rightarrow f:1
$$
\n
$$
M_{g}^{r} = M_{target}^{r} \cdot \frac{\eta}{2!} \cdot B^{4} \cdot L^{4} \cdot g_{Add}^{r}
$$
\n
$$
= M_{loop}^{r} \cdot \frac{1}{4!} \cdot B^{4} \cdot L^{4} \cdot g_{Add}^{r}
$$
\n
$$
L_{i}u_{i} + \sum_{r=1}^{r} g_{i}g_{r}g_{r}g_{r}g_{r} + \sum_{r=1}^{r} g_{i}g_{r}g_{r}g_{r}
$$
\n
$$
= M_{loop}^{r} \cdot \frac{1}{L^{r}} \cdot B^{2} \cdot L^{2} \cdot T^{2}
$$
\n
$$
= 3 \cdot 10^{-16} \cdot C_{in}^{r} \cdot 10^{r}
$$
\n
$$
= 3 \cdot 10^{-16} \cdot C_{in}^{r} \cdot 10^{r}
$$
\n
$$
= 3 \cdot 10^{-16} \cdot C_{in}^{r} \cdot 10^{r}
$$
\n
$$
= 3 \cdot 10^{-16} \cdot C_{in}^{r} \cdot 10^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r} \cdot 10^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot C_{in}^{r}
$$
\n
$$
= 4 \cdot 10^{-16} \cdot
$$

Robert A J Matthews (Birmingham) Eur.J.Phys.16 (1995)

Robert A J Matthews (Birmingham) Eur.J.Phys.16 (1995)

Torque and lever force $m(\frac{a^{1}}{2}+s^{1})\omega=-m_{9}S_{cor}\theta$ (3) We can derive a relation between ω and θ $(3) - 2$ $2w(\frac{a^{3}}{2}+s^{3})w+2wy$ Scar $\theta=0$ $26(1^{\frac{a}{2}}+5^2)\ddot{\theta}+2696\acute{c}$ $(\frac{n!}{3} - \frac{n!}{3}) \dot{\Theta}^{1} - 2g \delta \sin \theta = 0$ \Rightarrow $\omega^1 = \frac{2gS}{aL+gL}$ sin 6 Introduce overhanging parameter $s:na$ (O(h!n) **Central Toast Formula** $w^{1} = \frac{6}{9} \cdot \frac{9}{743h^{2}}$ Fin θ (4) (4) gives the angle velocity once the toast is detached. If the velocity is large enough, the toast will rotate more than 3π/2-φ, i.e. lands for sure on the jam-side up Langle at detachment 4:6 \Rightarrow jam-up condition: $u_0 z > \frac{3\pi}{2} - 4$ (s) with $\tau = \sqrt{\frac{2(h-2n)}{9}}$ (6) $\left(\frac{92n}{9}\right)^{2}$

