# Study of $e^+e^- \rightarrow \phi \eta$ at energy point from 1.84 to 1.97 GeV

Du xingsong, Han runze, Zhang yuepeng, Yan wenbiao

August 28, 2024

#### Introduction

- Predicted f(1D) state around 1.8 GeV, with large width ~ 400 MeV.
- ➢ Refit Belle  $e^+e^- → \phi \eta$  data, very narrow structure around 1.85 GeV.



|                       | $\phi(1D)$   | X(2175) as $\phi(2D)$ | $\phi(3D)$ |
|-----------------------|--------------|-----------------------|------------|
| Channel               | Value        | Value                 | Value      |
| Total                 | 442          | 186                   | 229        |
| $KK_1$                | 318          | 70.7                  | 61.4       |
| $K^*K^*$              | 11.5         | 33.4                  | 40.5       |
| KK                    | 40.8         | 25.4                  | 17.4       |
| $KK^*$                | 57.8         | 18.7                  | 12.6       |
| $\eta\phi$            | 13.6         | 0.879                 | 0.3        |
| $\eta'\phi$           |              | 0.0887                | 0.087      |
| $KK^{*}(1410)$        |              | 19.6                  | 5.76       |
| $KK_{2}^{*}(1430)$    |              | 14.5                  | 12.1       |
| $KK_1^{\overline{i}}$ |              | 2.56                  | 0.59       |
| $K^*K^*(1410)$        |              |                       | 45.6       |
| $K^*K_1$              |              |                       | 26.8       |
| $KK_{3}^{*}(1780)$    | <b>PR D9</b> | 074015 (2019          | 3.27       |
| $f_1(1426)\phi$       |              |                       | 2.16       |
| $K^*K'_1$             |              |                       | 0.454      |



|                        | 1 resonance    | 2 resonances   | 3 resonances     |
|------------------------|----------------|----------------|------------------|
| $r_1$                  | 0.3761(94)     | 0.291(29)      | 0.360(14)        |
| $M_1$ (MeV)            | $1650.5\pm4.1$ | $1661.8\pm6.0$ | $1656.8\pm4.9$   |
| $\Gamma_1$ (MeV)       | $158.7\pm5.3$  | $125 \pm 12$   | $150.8\pm7.0$    |
| $\Sigma_1$             | $40\sigma$     | $10\sigma$     | $25\sigma$       |
| $r_2$                  |                | 0.050(32)      | 0.0077(43)       |
| $\overline{M}_2$ (MeV) |                | $1921 \pm 86$  | $1850.7 \pm 5.3$ |
| $\Gamma_2$ (MeV)       |                | $290\pm230$    | $25\pm35$        |
| $\delta_2$             |                | $0.8 \pm 1.2$  | 5.59(44)         |
| $\tilde{\Sigma_2}$     |                | $1.5\sigma$    | $1.7\sigma$      |
| $r_3$                  |                |                | 0.0044(22)       |
| $M_3$ (MeV)            |                |                | $2215.7 \pm 8.3$ |
| $\Gamma_3$ (MeV)       |                |                | $35 \pm 23$      |
| $\delta_3$             |                |                | 2.59(39)         |
| $\Sigma_3$             |                |                | $2.0\sigma$      |
| $\chi^2/\text{NDF}$    | 83.6/69        | 58.5/65        | 47.1/61          |
| CL (%)                 | 11.1           | 70.2           | 90.4             |

#### **Data Sample**

►BOSS version :711

≻Data sets: new R scan data

≻MC samples(ConExc):

• 0.1M events per energy point

| BESIII(GeV) | <b>L(</b> pb <sup>-1</sup> ) |
|-------------|------------------------------|
| 1.84        | 1.501                        |
| 1.87        | 2.003                        |
| 1.872       | 2.014                        |
| 1.874       | 2.018                        |
| 1.875       | 1.485                        |
| 1.876       | 2.035                        |
| 1.877       | 1.341                        |
| 1.878       | 2.021                        |
| 1.882       | 2.033                        |
| 1.886       | 2.031                        |
| 1.900       | 2.022                        |
| 1.940       | 2.040                        |
| 1.970       | 2.229                        |

#### **Event selection**

- Good Charged Track
  - $|V_r| < 1$ cm
  - $|V_z| < 10$ cm
  - $|\cos \theta| < 0.93$
  - $N_{good} = 2$
  - $N_p = N_m$
- Good Photon Track
  - $E_{endcap} > 40 \text{ MeV}$
  - $E_{\text{barrel}} > 20 \text{ MeV}$
  - 0<TDC<700 ns
  - $N_{photon} >= 2$

#### ≻ PID

- prob(K)>prob(pi),prob(K)>0.001
- $N_{K+} = N_{K-} = 1$
- ➤ 4C Kinematic Fit
  - $\chi^2 < 100$
- Signal region
  - 0.98<M(φ)<1.05 GeV
  - 0.48<M(η)<0.62 GeV



# **1.874GeV signal distribution**



#### **1.874GeV signal distribution**



### Data fit Gauss⊗Breit-Wigner





| EXT | PARAMETER |             |             |
|-----|-----------|-------------|-------------|
| NO. | NAME      | VALUE       | ERROR       |
| 1   | mean0     | 9.01906e-04 | 1.39584e-03 |
| 2   | nsig      | 6.60278e+01 | 8.12654e+00 |
| 3   | sigma0    | 1.30840e-03 | 6.75255e-04 |

| EXT | PARAMETER |              |             |
|-----|-----------|--------------|-------------|
| NO. | NAME      | VALUE        | ERROR       |
| 1   | mean0     | -7.67885e-04 | 7.84281e-04 |
| 2   | nsig      | 6.49931e+01  | 8.06155e+00 |
| 3   | sigma0    | 4.16476e-03  | 7.45021e-04 |

# MC fit Gauss Sereit-Wigner



|      | 9000 | - |      |             |      |                 |       |                         |      |       |                 |       |
|------|------|---|------|-------------|------|-----------------|-------|-------------------------|------|-------|-----------------|-------|
|      | 8000 |   |      |             |      |                 | Λ     |                         | sum  |       |                 |       |
|      | 7000 | ~ |      |             |      |                 |       |                         |      |       |                 |       |
|      | 6000 | _ |      |             |      |                 |       | Ī                       | data |       |                 |       |
| ents | 5000 |   |      |             |      | -               | - 1   |                         |      |       |                 |       |
| Eve  | 4000 | - |      |             |      |                 | 1     |                         |      |       |                 |       |
|      | 3000 | - |      |             |      |                 |       |                         |      |       |                 |       |
|      | 2000 | - |      |             |      |                 | -     |                         |      |       |                 |       |
|      | 1000 | - |      |             | ÷    |                 |       | 1.                      | _    |       |                 |       |
|      | 0    | - |      |             | ++++ |                 |       |                         |      | • • • | <u>1. 6 . u</u> |       |
|      | 15   |   |      |             |      |                 |       |                         |      | •     |                 |       |
| E I  | 5    | - |      |             |      | • .             |       |                         |      |       | •               | ě     |
| ፈ    | -5   | _ |      | • •         | •    |                 |       |                         |      |       |                 |       |
|      | -10  | • |      | x 3 3 6 6 6 |      |                 |       | a a ta ca               |      |       | e e k a a       | 3 6 8 |
|      | 0.5  | 5 | 0.51 | 0.52        | 0.53 | 0.54            | 0.55  | 0.56                    | 0.57 | 0.58  | 0.59            | 0.6   |
|      |      |   |      |             |      | M <sub>γ1</sub> | (GeV/ | <i>c</i> <sup>2</sup> ) |      |       |                 |       |
|      |      |   |      |             |      |                 |       |                         |      |       |                 |       |

| EXT | PARAMETER |              |             |
|-----|-----------|--------------|-------------|
| NO. | NAME      | VALUE        | ERROR       |
| 1   | mean0     | -2.23619e-04 | 3.20363e-05 |
| 2   | nsig      | 1.63499e+04  | 1.27860e+02 |
| 3   | sigma0    | 1.82901e-03  | 4.71660e-05 |

| EXT | PARAMETER |             |             |
|-----|-----------|-------------|-------------|
| NO. | NAME      | VALUE       | ERROR       |
| 1   | mean0     | 1.20309e-03 | 4.51427e-05 |
| 2   | nsig      | 1.62981e+04 | 1.27659e+02 |
| 3   | sigma0    | 3.32184e-03 | 5.81128e-05 |

# 其他能量点 $m_{k^+k^-}$









1.870GeV



1.872GeV

# 其他能量点 $m_{k^+k^-}$



#### 1.876GeV





1.877GeV



1.878GeV

1.882GeV

# 其他能量点 $m_{k^+k^-}$









1.900GeV



1.940GeV

1.970GeV

$$\sigma = \frac{n_{observed \; events}}{L \cdot \epsilon_{MC} \cdot BR(\eta \to \gamma \gamma) \cdot BR(\phi \to K^+ K^-)}$$

截面

| BESIII(GeV) | observed<br>events | <b>L(</b> pb <sup>-1</sup> ) | ε(%) | <b>Ν/(Lε)(pb)</b> |
|-------------|--------------------|------------------------------|------|-------------------|
| 1.84        | 41±6               | 1.501                        | 15.0 | 941.31±137.75     |
| 1.87        | 51±7               | 2.003                        | 16.4 | 802.54±110.15     |
| 1.872       | 62±8               | 2.014                        | 16.4 | 970.31±125.2      |
| 1.874       | 65±8               | 2.018                        | 16.3 | 1021.47±125.72    |
| 1.875       | 46±7               | 1.485                        | 16.5 | 970.44±147.68     |
| 1.876       | 49±7               | 2.035                        | 16.6 | 749.8±107.11      |
| 1.877       | 40±6               | 1.341                        | 16.6 | 928.85±139.33     |
| 1.878       | 46±7               | 2.021                        | 16.8 | 700.33±106.57     |
| 1.882       | 46±7               | 2.033                        | 16.7 | 700.37±106.58     |
| 1.886       | 57±8               | 2.031                        | 17.1 | 848.38±119.07     |
| 1.900       | 50±7               | 2.022                        | 17.6 | 726.27±101.68     |
| 1.940       | 52±7               | 2.040                        | 19.4 | 679.19±91.43      |
| 1.970       | 65±8               | 2.229                        | 20.3 | 742.56±91.39      |



15

#### **Summary**

- $\succ$  We use K+K- to reconstruct  $\phi$  and  $\gamma \gamma$  for  $\eta$
- After dealing with the data and MC samples, we obtained the distribution of the cross section as a function of energy

 $\succ$  Next to do

- Involving more decay channels of  $\phi$  and  $\eta$  to achieve a larger statistical sample
- Imposing stricter restrictions on event selection criteria



# Backup cross check

| BESIII(GeV) | observed<br>events | L(pb <sup>-1</sup> ) | ε(%) | N/(Lε)(pb)    | N/(Lε)(pb)          |
|-------------|--------------------|----------------------|------|---------------|---------------------|
| 1.84        | 41±6               | 1.501                | 15.1 | 935.08±136.84 | 941.31±137.75       |
| 1.87        | 51±7               | 2.003                | 16.5 | 797.68±109.49 | 802.54±110.15       |
| 1.872       | 62±8               | 2.014                | 16.5 | 964.43±124.44 | 970.31±125.2        |
| 1.874       | 64±8               | 2.018                | 16.5 | 993.57±124.2  | 1021.47±125.72      |
| 1.875       | 46±7               | 1.485                | 16.6 | 964.6±146.79  | 970.44±147.68       |
| 1.876       | 50±7               | 2.035                | 16.7 | 760.52±106.47 | 749.8±107.11        |
| 1.877       | 39±6               | 1.341                | 16.7 | 900.21±138.49 | 928.85±139.33       |
| 1.878       | 46±7               | 2.021                | 17   | 692.09±105.32 | $700.33 \pm 106.57$ |
| 1.882       | 46±7               | 2.033                | 16.9 | 692.08±105.32 | $700.37 \pm 106.58$ |
| 1.886       | 56±7               | 2.031                | 17.3 | 823.86±102.98 | 848.38±119.07       |
| 1.900       | 51±7               | 2.022                | 17.8 | 732.47±100.54 | 726.27±101.68       |
| 1.940       | 51±7               | 2.040                | 19.5 | 662.72±90.961 | 679.19±91.43        |
| 1.970       | 64±8               | 2.229                | 20   | 742.1±92.762  | 742.56±91.39        |