Status of SCEP experiment

Beige Liu^{1,3}, Changqing Ye^{1,3}, Qing lin^{1,2,3} etc..

(SCEP Collaboration)

¹State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China ²Deep Space Exploration Laboratory, Hefei, 230022, China ³Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China ⁴Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China ⁵CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, 230026, China ⁶Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China

Theory of Magnetic Monopole

1931

Pattern

Afterglow Ligh

1968

1969

Induce new symmetry of Maxwell equation

Plastic Scintillator Background Estimation

1974

- Explain the quantization of electron charge
- Predicted by GUT and string theory
- Evidence for inflation theory

Combination of Induction & Scintillation Signal for MM Search

- **Combination of the plastic scintillator and specialized induction coils coupling to** high sensitive atomic magnetometer or amplifiers.
- **Cost-effectiveness**
- 2. Scalability under moderate conditions

- The main background is the pile up of the top and bottom scintillation signal.
- Low speed MM deposit less energy in plastic scintillators which is similar to heavy ions causing high background rate in this speed region
- Angular correction is needed because of the long track of background particle in PS
- Moon-based detector suffers higher background rate than a terrestrial one in 3 order of magnitudes

Projected Sensitivity

Detector Simulation and Validation

• It is estimated that such detector can reach current flux limit set by previous induction (particle) detection with a signal-to-noise ratio of the induction signal larger than 4.2 and coil layer larger than 3, assuming an effective exposure being 20000 $year \cdot m^2$

Summary and Prospects

- The SCEP experiment aims to detect the induction signal and scintillation signal simultaneously when a MM passes through coils and deposits energy inside plastic scintillators.
- The simulation framework of such detector have been developed and validated.
- Such technique is potentially to reach the current flux limit for MM speed >10⁻⁶ c set by previous experiments.

Further study will focus on the following aspects to increase the sensitivity.

- **Induction coil optimization**.
- **Coil array arrangement design.**
- **Triggering algorithm development.**

Induction Coil Optimization

低通滤波级

增益极

Coil arrangement & triggering algorithm optimization

Validation of noise

The noise amplitude matches with prediction (deviation < 10%)

> Machine learning method for pattern discrimination

CONTACTS

- Changqing Ye <u>ycq@mail.ustc.edu.cn</u>
- Beige Liu <u>PB0752@mail.ustc.edu.cn</u>
- Qing Lin <u>Qinglin@ustc.edu.cn</u>

低噪声极