

Measurements of D⁰ production in Zr+Zr and Ru+Ru collisiosns at 200 GeV

Chairperson: Daniel Kikola Member(s) at large: Guannan Xie Member for English/Grammar QA: Helen Caines Member for Code QA: Diptanil Roy PWG representative: Isaac Mooney PAs: Yuan Su, Yifei Zhang, Xiaolong Chen PA representative(s): Yuan Su

July. 31 2024

• Analytical flow chart of D^0 in Ru+Ru and Zr+Zr collisions

• The physical results shown in the paper draft

• Overall construction and logical flow of the paper draft

• Summary

Analytical flow chart of D⁰ in Ru+Ru and Zr+Zr collisions

- Data sets: production_isobar_2018
- **Production tag:** P20ic
- **Trigger:** 600001, 600011, 600021, 600031 (MB)
- Embedding Request ID: 20201503
- Badrunlist: Ru+Ru Zr+Zr (50+35)

Analysis cuts

Main event Level cuts		Main track quality cuts		
Cuts	Value	Cuts	Value	
$ V_z $	(-35,25) cm	p_T (GeV/c)	> 0.6	
V_r	< 2. cm	TPC Nhits	≥20	
VzDiff	< 3. cm	nHits/HitsMax	[0.52, 1.2]	
0-80%		gDCA	≤ 2.0 cm	

PID cuts					
Cuts	Value				
p < 1.6 && β > 0	hybrid PID functions				
p ≥ 1.6 && β > 0 (Pion)	hybrid PID functions				

• Efficiency correction & Systematic uncertainties

Fig. 4 D^0 efficiency as a function of D^0 transverse momentum at 0–10%, 10–40%, 40–80% and 0–80% centrality classes.

Table 2 System	matic uncertainties in D ⁻ a	anaiysis	64		
			0-10%	10-40%	40 - 80%
	spectra	Raw yield	3.9 - 16.5%	3.7 - 10.5%	4.0-8.5 %
		Double counting	0.7%	0.8%	0.9%
		Track p_T variation	10.6%	9.3%	7.3%
		€PID	3%	3%	3%
		TRE	2-6%	2-6%	2-6%
		BR	0.5%	0.5%	0.5%
	R _{AA}	$\langle N_{bin} \rangle$	1.6%	0.6%	0.4%
		pp base	20.6-71.8%	20.6-71.8%	20.6-71.8%
	Rcp (/40-80%)		0-10%		10-40%
		Raw yield	13.6 - 20.7%		12.4-16.5 %
		TRE	0		0
Integrated cross section	BR	0		0	
	Internated man continu		$p_{\rm T} > 0$		$p_{\rm T} > 4 \text{ GeV}/c$
	integrated cross section	Total	12.7 - 15.8%		12.0-15.2 %

07/31/2024

Yuan Su (for PAs) GPC meeting

Fig. 5 D^0 invariant yields at mid-rapidity (|y| < 1) as a function of $p_{\rm T}$ for different centrality classes in Ru+Ru and Zr+Zr collisions compared to that of D^0 in Au + Au collisions at the same energy (a). Vertical lines and square brackets on data points indicate statistical and systematic uncertainties, respectively. The Data/fit results are shown in the bottom panels (b), (c), and (d), where the fits are applied on corresponding $D^0 p_{\rm T}$ spectra in Ru+Ru and Zr+Zr collisions by a Levy function.

• charm quarks may have undergone a similar dynamic process

• D^0 thermal properties (BW, TBW, m_T spectra)

Fig. 7 The correlation between T_{kin} and $\langle \beta_T \rangle$, extracted from the Blast-wave fits for different hadron p_T spectra

Fig. 9 T_{eff} obtained from $m_{\rm T}$ spectra fits as a function of the hadron mass in isobar and Au + Au collisions.

Table 3 Tsallis blast-wave model fits parameters to $D^0 p_{\rm T}$ -differential spectra in Ru+Ru and Zr+Zr collisions.

Centrality	$\langle \beta_T \rangle$ (c)	q-1
$0 extsf{-}10\%$	$0.282{\pm}0.018$	$0.070 {\pm} 0.007$
10- $40%$	$0.207{\pm}0.030$	$0.080 {\pm} 0.007$
40–80%	$0.189{\pm}0.031$	$0.089 {\pm} 0.005$

- D^0 invariant yield at mid rapidity (|y| < 1) vs. p_T for different centrality bins fitted with blast-wave function.
- D^0 freeze out temperature in Isobar collisions are consistent with that of in Au + Au collisions for the same centrality.
- The average flow velocity increases with central collision, and (q −1) is also found to be close to zero.

07/31/2024

• $D^0 \mathbf{R}_{AA} \& \mathbf{R}_{CP}$ in Zr+Zr and Ru+Ru collisions

- $D^0 R_{AA}$ for different centrality classes in Isobar collisions compared to that of Au + Au results, quenching of hard probes.
- R_{CP} vs. p_T , D^0 production in central collisions show a suppression hehavior w.r.t mid-central collisions.

Fig. 10 D^0 R_{AA} within the same centrality are compared collibetween isobar and Au+Au collisions. The dashed lines are model curves based on Langevin dynamics.

Fig. 13 $D^0 R_{\rm CP}$ with the 40–80% spectrum as the reference for 0–10% (a) and 10–40% (b) in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV compared to corresponding results in Au + Au collisions at the same center-of-mass energy [3]. The statistical and systematic uncertainties are shown as error bars and brackets on the data points. The grey bands around unity and boxes on the right depict uncertainty in Au + Au collisions.

• $D^0 \mathbf{R}_{AA} \& \mathbf{R}_{CP}$ in Zr+Zr and Ru+Ru collisions

- D^0 integrated R_{AA} vs. $< N_{part} >$ for $p_T > 0$ and $p_T > 4$ GeV/c in Isobar and Au + Au collisions.
- $D^0 R_{AA}$ vs. p_T with similar $< N_{part} >$ between different system, no obvious colliding system dependence is observed, and higher precision is needed to draw the differences between the dependencies with respect to centrality and $< N_{part} >$

Fig. 12 $D^0 R_{AA}$ as a function of $\langle N_{part} \rangle$ for $p_T > 0$ (a)se and $p_T > 4 \text{ GeV}/c$ (b). The light and dark green boxes on_{se} the right depict the global uncertainty in pp collisions and the normalization uncertainties of the $\langle N_{bin} \rangle$ in Au + Au collisions, respectively. The dark green boxes from left to right^{se} correspond to central to peripheral collisions.

Fig. 11 D^0 R_{AA} in central Ru+Ru and Zr+Zr collisions compared to that in semi-central Au + Au collisions, which has a similar $\langle N_{part} \rangle$.

• Introduction: background & motivation & definition

$$R_{AA} = \frac{\sigma_{inel}^{NN} d^2 N_{AA}^{D^0} / dp_T dy}{< N_{coll} > d^2 \sigma_{pp}^{D^0} / dp_T dy}$$

- Data set and experimental apparatus: mainly detector parameter (TPC & TOF) in this analysis
- Data analysis :
- D⁰-meson reconstruction
- D⁰ p_T spectra correction
- Systematic uncertainties
- Results and discussion:
 - N_{bin} scaling of D⁰ production cross section
 - Bulk properties
 - nuclear modification factor R_{AA} and R_{CP}

The TPC, which is used to detect charged particles has a pseudorapidity range of $|\eta| < 1$ with full 2π azimuthal coverage and a transverse momentum $(p_{\rm T})$ lower limit of 0.2 GeV/c, is based on a cylindrical gaseous chamber with longitudinal and radial dimensions of |z| < 210 cm and 50 < r < 200 cm, respectively. The primary vertex with a radial distance (V_r) and the vertex position along the beam direction (V_z) in each collision is also reconstructed by TPC, $V_r < 2$ cm and $-35 < V_z < 25$ cm are required in this analysis.

A full-barrel TOF is a large-area cylindrical array made of multigap resistive plate chambers and built outside the TPC. It covers the full azimuthal angle (0- 2π) with the pseudorapidity region $|\eta| < 1$. The time-of-flight with an approximate time resolution of 100 ps is measured as the difference between the start time given by the VPD and the stop time measured by the TOF.

07/31/2024

Summary

- D^0 -meson productions are firstly measured at mid-rapidity (|y| < 1) in 200 GeV isobar collisions.
- The number of binary collisions scale effect of D⁰ production cross section between isobar and Au + Au collisions is observed.
- The strong suppression of D^0 nuclear modification factor R_{AA} is observed for $p_T > 3$ GeV/c in central isobar collisions, demonstrating that charm quarks suffer significant energy loss in the QGP.
- No significant systematic dependence of D^0 kinetic freeze-out properties in central collisions between isobar and Au + Au collisions within uncertainties is observed.

Backup

