

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Introduction Data and MC Data sets Event selections FB Asym Asym of cos ϕ_3 FB Asym Summarv Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Lei Xia^{1,2}, Dexu Lin^{3,4}, Yadi Wang⁵, Jifeng Hu^{6,a}, Frank E. Maas⁷, Guangshun Huang^{1,2} ¹ University of Science and Technology of China

² State Key Laboratory of Particle Detection and Electronics ³ Institute of Modern Physics

⁴ University of Chinese Academy of Sciences

⁵ North China Electric Power University

⁶ South China Normal University

⁷ Helmholtz Institute Mainz

^a Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter

The BESIII Collaboration meeting in Summer 2024 July 04th, 2024, Liaoning University

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

Outline

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma \rho \bar{\rho}$ at BESIII

Introduction Data and MC Data sets Event selections FB Asym Asym of $\cos \phi_1$ FB Asym

1 Introduction

- 2 Data sets and event selection
- **3** Forward-Backward asymmetry

4 Summary

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

2/18

Introduction

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Introduction

Data and MC Data sets Event selections FB Asym

Asym of cos FB Asym

Summary

1 Introduction

- 2 Data sets and event selection
 - Data sets
 - Event selections
- 3 Forward-Backward asymmetry
 - Asymmetry of the distribution $\cos \phi_3$
 - Forward-Backward asymmetry
- 4 Summary

イロト イボト イヨト イヨト

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

≣ 2/18

Baryon Form Factors

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Introduction

Data and M(Data sets Event selection FB Asym Asym of cos φ FB Asym

Summary

- Connected to charge, magnetization distribution,
- Crucial testing ground for models of the nucleon internal structure.
- Measurement of baryon FF: Space-like (SL) and Time-like (TL).

•8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 • The nucleon electromagnetic vertex Γ_{μ} describing the hadron current:

$$\Gamma_{\mu}(p',p) = \gamma_{\mu}F_{1}(q^{2}) + \frac{m_{\mu\nu}q^{2}}{2m_{p}c}F_{2}(q^{2})$$

Sachs FFs in TL:

Electron FF: $G_E(q^2) = e^{-i\theta_2}[F_1(q^2) + \tau \kappa_p F_2(q^2)]$ Magnet FF: $G_M(q^2) = e^{-i(\theta_1+\theta_2)}[F_1(q^2) + \kappa_p F_2(q^2)]$

Fix the phase

angles in proton elec-

tromagnetic form factors from charge

asymmetry

distribution

in process

 $e^+e^- \rightarrow$

 $\gamma p \bar{p}$ at

BESIII

Introduction

 $|G_E(s)/G_M(s)|$

Complex form of EMFFs: *holy grail* of time-like form factors of proton —Achim Denig

- History of TLFF measurements:
 - Numerous measurements historically, mostly assuming $|G_{\text{eff}}| = |G_E| = |G_M|$ due to limited statistics.

- First observation of charge asymmetry (*A_C*) caused by two-photon exchange (TPE) in 2024 (M. Ablikim *et al.* (BESIII Collaboration), BAM-00575).
- Challenges in complex TLFF measurements:
 - Protons cannot decay, limiting the direct measurement approaches.
 - No polarization proton.
 - Measurements can only determine the module of $|G_E|$ and $|G_M|$.

The key process: high order of the process of $e^+e^- ightarrow par{p}$

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma \rho \bar{\rho}$ at BESIII

Introduction

Data and MC Data sets Event selections **FB Asym** Asym of $\cos \phi$ FB Asym

Summarv

• Strategy 1: TPE: $\frac{\mathrm{d}\sigma_{p\bar{p}}^{\mathrm{tot}}}{\mathrm{d}\cos\theta} = \frac{\pi\alpha^2\beta C}{2q^2} \left\{ |G_M|^2 + \frac{4m_p^2 c^4}{q^2} |G_E|^2 + 2\left(\mathcal{R}(G_M\Delta G_M) + \frac{4m_p^2 c^4}{q^2} \mathcal{R}(G_E\Delta G_E)\right) - \left[|G_M|^2 - \frac{4m_p^2 c^4}{q^2} |G_E|^2 + 2\left(\mathcal{R}(G_M\Delta G_M) - \frac{4m_p^2 c^4}{q^2} \mathcal{R}(G_E\Delta G_E)\right)\right] \cos^2\theta - \frac{q}{2m_p^2 c^4} \sqrt{q^2 - 4m_p^2 c^4} \mathcal{R}\left((|G_M|^2 - \frac{4m_p^2 c^4}{q^2} |G_E|^2)\Delta F_3^*\right) \cos\theta + \frac{q}{2m_p^2 c^4} \sqrt{q^2 - 4m_p^2 c^4} \mathcal{R}\left((|G_M|^2 - \frac{4m_p^2 c^4}{q^2} |G_E|^2)\Delta F_3^*\right) \cos^3\theta \right\} = b_0(q^2) + b_1(q^2) \cos\theta + b_2(q^2) \cos^2\theta - b_1(q^2) \cos^3\theta,$

• Strategy 2: Radiation process: $e^+e^- \rightarrow \gamma p\bar{p}$:

$$\mathrm{d}\sigma_{\gamma\rho\bar{\rho}} = \mathrm{d}\sigma_{\gamma\rho\bar{\rho}}^{\mathsf{ISR}} + \mathrm{d}\sigma_{\gamma\rho\bar{\rho}}^{\mathsf{FSR}} + \mathrm{d}\sigma_{\gamma\rho\bar{\rho}}^{\mathsf{IFI}}$$

- $d\sigma_{\gamma p \bar{p}}^{ISR}$: no relation with phase angles, $d\sigma_{\gamma p \bar{p}}^{FSR}$: small.
- $d\sigma_{\gamma \rho \bar{\rho}}^{\text{IFI}}$: the $p\bar{p}$ is produced with charge asymmetry (A_C) : C = -1 (ISR), C = +1 (FSR).

 $\mathrm{d}\sigma_{\nu n\bar{n}}^{\mathsf{IFI}} = -\,\mathrm{d}\sigma_{\nu n\bar{n}}^{\mathsf{c}(FSR)} \mapsto \mathsf{d} = \mathsf{b} \mathsf{d} = \mathsf{b} \mathsf{d} = \mathsf{b}$

• $A_C \rightarrow$ Final states charge parity transformation:

= √Q (~

The key process: high order of the process of $e^+e^- ightarrow par{p}$

The interference term

Complex form of EMFFs: *holy grail* of time-like form factors of proton —Achim Denig

Introduction

Data and MC Data sets Event selections FB Asym Asym of $\cos \phi_3$ FB Asym Summary

Defining a value to reveal this asymmetry:

 $\sigma_{\gamma p \bar{p}}^{' \mathsf{IFI}} = \sigma_{\gamma p \bar{p}}^{\mathsf{IFI}}(\cos \phi_3 > 0) - \sigma_{\gamma p \bar{p}}^{\mathsf{IFI}}(\cos \phi_3 < 0).$

 $\begin{array}{l} \text{Meanwhile, } \sigma^{\text{ISR}}_{\gamma \rho \bar{\rho}}(\cos \phi_3 > 0) - \sigma^{\text{ISR}}_{\gamma \rho \bar{\rho}}(\cos \phi_3 < 0) = 0, \\ \text{and } \sigma^{\text{FSR}}_{\gamma \rho \bar{\rho}}(\cos \phi_3 > 0) - \sigma^{\text{FSR}}_{\gamma \rho \bar{\rho}}(\cos \phi_3 < 0) = 0. \end{array}$

Now, one can define a ratio:

$$A_{FB} = \frac{\sigma_{\gamma \rho \bar{\rho}}(\cos \phi_3 > 0) - \sigma_{\gamma \rho \bar{\rho}}(\cos \phi_3 < 0)}{\sigma_{\gamma \rho \bar{\rho}}(\cos \phi_3 > 0) + \sigma_{\gamma \rho \bar{\rho}}(\cos \phi_3 < 0)}$$

which represents the asymmetry.

July 04th, 2024

Data sets and event selection

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

ntroduction

Data and MC Data sets Event selections

FB Asym Asym of cos of FB Asym

Summary

1 Introduction

- 2 Data sets and event selection
 - Data sets
 - Event selections
- **3** Forward-Backward asymmetry
 - Asymmetry of the distribution of $\cos \phi_3$
 - Forward-Backward asymmetry

4 Summary

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

Data sets

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Data and MC Data sets Event selections

Asym of cos FB Asym

Summary

- Boss version: BOSS 6.6.5.p01, 6.6.4.p01, 7.0.3, 7.0.8.
- Data sets
 - 2012 and 2015 R-scan data (M. Ablikim et al., CPC 41, 063001 (2017)).
 - 2015 Y(2175) data (M. Ablikim et al., CPC 41, 113001 (2017)).
 - 2017- χ_{cJ} data (M. Ablikim *et al.*, PRL **129**, 122001 (2022)).

The integrated luminosity of the analyzed data sets is quoted here.

	\sqrt{s} [GeV]	Run No.	Lumi [pb ⁻¹]	\sqrt{s} [GeV]	Run No.	Lumi [pb ⁻¹]	
	2.0000	41729-41909	10.1 ± 0.1	2.9500	39619-39650	15.9 ± 0.1	
	2.0500	41911-41958	3.34 ± 0.03	2.9810	39651-39679	16.1 ± 0.1	
	2.1000	41588-41727	12.2 ± 0.1	3.0000	39680-39710	15.9 ± 0.1	
	2.1250	42004-43253	108 ± 1	3.0200	39711-39738	17.3 ± 0.1	
	2.1500	41533-41570	2.84 ± 0.02		27147-27233, 28241-28266,	31.0 ± 0.2	
	2.1750	50 41416-41532 10.6 ± 0		3.0800	39355-39618,	126 ± 1	
	2.2000	40989-41121	13.7 ± 0.1	1	54982-55053, 59016-59141	136 ± 1	
-	2.2324	28624-28648,	2.65 ± 0.02	3.4900	47467-47493	$12.11 \pm 0.01 \pm 0.07$	
		41122-41239	11.9 ± 0.1	3.5080	51657-51893	$181.79 \pm 0.04 \pm 1.04$	
	2.3094	41240-41411	21.1 ± 0.1	3.50967	51584-51656	$39.29 \pm 0.02 \pm 0.22$	
	2.3864	40806-40951	22.5 ± 0.2	3.51039	51894-52090	$183.64 \pm 0.04 \pm 1.05$	
	2.3960	40459-40769	66.9 ± 0.5	3.51458	52298-52332	$40.92 \pm 0.02 \pm 0.23$	
	2.6444	40128-40296	33.7 ± 0.2		11414-13988, 14395-14604,	$2021.9 \pm 0.2 \pm 12.9$	
	2.6464	40300-40435	34.0 ± 0.3	3.7737	20448-23454,	2931.0 ± 0.2 ± 13.0	
	2.9000	39775-40069	105 ± 1]	70522-73929		

July 04th, 2024

Event selections

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Introduction Data and MC Data sets Event selections FB Asym Asym of $\cos \phi_3$ FB Asym

 $V_r < 1 \text{ cm}, |V_z| < 10 \text{ cm and } |\cos \theta| < 0.93.$

Charged tracks in a good event:

$$N_{\rm Good} = 2$$
, $N_{\rm Charge} = 0$

Particle identification:

- 0.00 < p_{trk±} < 0.36 GeV/c, use dE/dx, Prob(p) + 0.00002 > Prob(e, π, K);
- $0.36 \leq p_{trk^{\pm}} < 0.5 \text{ GeV}/c$, use dE/dx,

$$Prob(p) + 0.00001 > Prob(e, \pi, K);$$

• $p_{trk^{\pm}} > 0.5 \text{ GeV}/c$, use dE/dx and TOF, $Prob(p) > Prob(e, \pi, K)$.

To veto Bhabha, for positive track, require:

 $E_{trk^+}/p_{trk^+}c < 0.5.$

If there is no valid EMC information, the event is kept for further selection, but discarded for $p_{trk^+} > 1.2 \text{ GeV}/c_{\text{c}}$

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

Fix the phase angles in proton elec-

tromagnetic form factors from charge asymmetry

distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Event selections

Event selections

Good neutral tracks:

 E_{γ}

$$\mu > 25$$
 MeV (barrel), $E_{\gamma} > 50$ MeV (endcap), $0 < t(50 \, ns) < 14.$

Neutral tracks in a good event:

$$N_{
m neutral} \geq 1.$$

- Vertex fit for trk^{\pm} to improve momentum resolution: $\chi^2_{vtx} < 100$.
- **Four-constraint (4C)** kinematic fit required, $\chi^2_{4C} < 200$.
- Five-constraint (5C) kinematic for $p\bar{p}\pi^0/\eta$, $\chi^2_{5C} > 25$.
- One-constraint (1C) kinematic for $\gamma J/\psi \rightarrow \gamma p\bar{p}$, $\chi^2_{1C} > 25$.
- **To veto** $p\bar{p}$ born events, require $\theta_{trk^+trk^-}$ in center-of-mass: $\theta_{trk^+trk^-} < 175^\circ \text{ at 2 GeV}, \ \theta_{trk^+trk^-} < 175.5^\circ \text{ at 2.05 GeV}, \ \theta_{trk^+trk^-} < 176^\circ \text{ at 2.1-2.2 GeV}, \ \theta_{trk^+trk^-} < 176.5^\circ \text{ at 2.2324 GeV}, \ \theta_{trk^+trk^-} < 177^\circ \text{ at 2.3094-2.3960 GeV}, \ \theta_{trk^+trk^-} < 177.5^\circ \text{ at 2.5-2.7 GeV}, \ \theta_{trk^+trk^-} < 178^\circ \text{ at 2.80-3.08 GeV}, \ \theta_{trk^+trk^-} < 178.5^\circ \text{ at 3.080-3.773 GeV}. \ \text{to archive } N_{p\bar{p}}/N_{\gamma p\bar{p}} < 2\%.$

Background Reduction

Event selections

TMVA: BDTG. (a) 2.1000 GeV, (b) 2.9000 GeV, (c) 3.0800 GeV.
Combine of χ^2 of 5C $p\bar{\pi}^0$, χ^2 of 1C $\pi^0 \to \gamma\gamma$, angle of $p\bar{p}$, $\sqrt{s} - M_{p\bar{p}}c^2$.
(c)

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

Background study

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Data and MC Data sets Event selections FB Asym

Asym of cos FB Asym

/= [Ca)/]	Bhabha		Dimu		<i>pp</i> Born		$p\bar{p}\pi^0$		Other $q \bar q$	
Vs [Gev]	Ngen	N _{sur}	Ngen	N _{sur}	Ngen	N _{sur}	Ngen	N _{sur}	Ngen	N _{sur}
2.0000	18550000	0	250000	0	5000000	2	0	0	1740000	0
2.0500	5900000	0	100000	0	5000000	144	5000000	0	900000	0
2.1000	20300000	0	250000	0	5000000	342	5000000	87	1860000	0
2.1250	176850000	7	2200000	0	5000000	446	5000000	180	12300000	0
2.1500	4550000	0	100000	0	5000000	514	5000000	309	800000	0
2.1750	16600000	0	250000	0	5000000	546	5000000	545	1600000	0
2.2000	20800000	0	300000	0	5000000	696	5000000	701	1880000	0
2.2324	17550000	0	250000	0	5000000	1513	5000000	1479	1660000	0
2.3094	29100000	2	400000	0	5000000	3840	5000000	3069	2440000	0
2.3864	29250000	0	400000	0	5000000	3663	5000000	4440	2440000	0
2.3960	85900000	0	1050000	0	5000000	3598	5000000	4577	6200000	0
2.5000	1300000	0	50000	0	5000000	4193	5000000	4104	700000	0
2.6444	35500000	0	450000	0	5000000	3470	5000000	5457	2860000	0
2.6464	35900000	0	450000	0	5000000	3403	5000000	5392	2880000	0
2.7000	1050000	0	50000	0	5000000	3035	5000000	5518	700000	0
2.8000	950000	0	50000	0	5000000	9977	5000000	6845	700000	0
2.9000	92800000	0	1150000	0	5000000	10738	5000000	6876	6620000	0
2.9500	13550000	0	200000	0	5000000	11524	5000000	7108	1400000	0
2.9810	13400000	0	200000	0	5000000	10535	5000000	7183	1380000	0
3.0000	14250000	0	200000	0	5000000	10913	5000000	7389	1360000	0
3.0200	14050000	0	200000	0	5000000	10450	5000000	7440	1420000	0
3.0800	98350000	0	1250000	0	5000000	10773	5000000	6936	6680000	0

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

≣ ≪ 13/18

・ロト ・四ト ・ヨト ・ヨト

Forward-Backward asymmetry

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Introduction Data and MC Data sets

FB Asym

1 Introduction

2 Data sets and event selection

- Data sets
- Event selections

3 Forward-Backward asymmetry

- Asymmetry of the distribution of $\cos \phi_3$
- Forward-Backward asymmetry

4 Summary

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

14/18

Asymmetry of the distribution of $\cos \phi_3$

- Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII
- Introduction Data and MC Data sets Event selections FB Asym Asym of cos ϕ_3 FB Asym Summary

• We have confirmed the asymmetry in $\cos \phi_3$ distribution of the pro-

- Fit of $\cos \phi_3$ in symmetric asymmetric model:
 - Symmetric model:

$$rac{\mathrm{d}\sigma^{\mathrm{sym}}_{\gamma par{p}}}{\mathrm{d}\cos\phi_3} = a_0(q^2) + a_2(q^2)\cos^2\phi_3.$$

• Asymmetric model:

$$\frac{\mathrm{d}\sigma_{\gamma p\bar{p}}^{\mathrm{asym}}}{\mathrm{d}\cos\phi_3} = a_0(q^2) + a_1(q^2)\cos\phi_3 + a_2(q^2)\cos^2\phi_3 + a_3(q^2)\cos^3\phi_3.$$

July 04th, 2024

Forward-Backward asymmetry

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Introduction Data and MC Data sets Event selections FB Asym Asym of $\cos \phi_3$ FB Asym Summary

- Results:
 - 2.000-3.080 GeV: $A_{FB} = (-1.79 \pm 1.42)\%$;
 - 3.400-3.671 GeV: A_{FB} = (−4.17 ± 1.91)%;
 - 3.7737 GeV: A_{FB} = (−6.18 ± 0.66)%;
- Evidence of Forward-Backward asymmetry for the first time in $e^+e^- \rightarrow \gamma p\bar{p}$, with more than 3σ significance.

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

Forward-Backward asymmetry

Introduction Data and MC Data sets Event selection: FB Asym Asym of cos φ: FB Asym

Results:

- 2.000-3.671 GeV: $A_{FB} = (-2.63 \pm 1.14)\%$;
- Significance is 1.8σ.

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

16/18

Results of the Phase angle θ_1 of proton

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma \rho \bar{\rho}$ at BESIII

Introduction Data and MC Data sets Event selections FB Asym Asym of cos ϕ_3 FB Asym Summary • Assump $\theta_2 = 90^\circ$:

\sqrt{s} [GeV]	A _{FB} [%]	θ_1 [°]	\sqrt{s} [GeV]	A _{FB} [%]	θ_1 [°]
2.000 - 3.080	-1.79 ± 1.42	$143.4^{+29.5}_{-53.4}$	2.000 - 3.671	-2.63 ± 1.14	$118.4^{+31.8}_{-28.4}$
3.400 - 3.671	-4.17 ± 1.91	90.0 ± 41.0	3.7737	-3.74 ± 0.99	90.0 ± 23.4

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

≣ ≪ 17/18

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Summary

Fix the phase angles in proton electromagnetic form factors from charge asymmetry distribution in process $e^+e^- \rightarrow \gamma p\bar{p}$ at BESIII

Introduction Data and MC Data sets Event selections FB Asym Asym of $\cos \phi_3$ FB Asym

Summary

1 Introduction

Data sets and event selection

- Data sets
- Event selections
- **3** Forward-Backward asymmetry
 - Asymmetry of the distribution of $\cos \phi_3$
 - Forward-Backward asymmetry

4 Summary

July 04th, 2024

The BESIII Collaboration meeting in Summer 2024

18/18

Summary

Fix the phase angles in proton electromagnetic form factors asymmetry distribution in process $e^+e^- \rightarrow \gamma p \bar{p}$ at BESIII

Introduction Data and MC Data sets Event selections FB Asym

Summarv

- Using data samples between 2.000 and 3.773 GeV collected with the BESIII detector, we studied the forward-backward asymmetry of $\cos \phi_3$ in $e^+e^- \rightarrow \gamma p\bar{p}$ reaction.
- Evidence of Forward-Backward asymmetry for the first time in $e^+e^- \rightarrow \gamma p\bar{p}$, with more than 3σ significance.
- A new window of insight into the phase angles of EMFF of proton.

\sqrt{s} [GeV]	A _{FB} [%]	θ_1 [°]	\sqrt{s} [GeV]	A _{FB} [%]	θ_1 [°]
2.000 - 3.080	-1.79 ± 1.42	$143.4^{+29.5}_{-53.4}$	2.000 - 3.671	-2.63 ± 1.14	$118.4^{+31.8}_{-28.4}$
3.400 - 3.671	-4.17 ± 1.91	90.0 ± 41.0	3.7737	-3.74 ± 0.99	90.0 ± 23.4

Thanks for your attention!